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ce comprising means for providing a source of matter having a
spacetime curvature opposite that of a gravitating body where e
opposite curvatures provide mutually repulsive antigravitation- =
al force, and method and means for applying a force on the op-
positely curved matter from the source wherein in the case of
the Earth, the resulting force balance provides repulsive gravi-
tational work on the oppositely curved matter and the gravita-
tional field of the gravitating body in the first positive curva-
ture of spacetime. The opposite, or negative curvature of matter
is provided according to a two-dimensional manifold of nega-
tive curvature derived on a novel atomic theory which is con-
sistent with Newtonian mechanics, Maxwell’s equations, atom-
ic theory, General Relativity and the weak and strong nuclear
forces and which permits the calculation of any matter, energy,
or force in terms of fundamental constants of nature. Accord-
ing to the present invention the spacetime manifold of negative
curvature is a solution of the equations and boundary condi-

tions of the novel atomic theory comprising, in part a three-di-
mensional wave equation. The manifold satisfies the boundary condition that its spacetime Fourier transform contains no compo-

nents which are synchronous with waves traveling at the speed of light; therefore, the manifold is non-radiative. In oné embodi-
ment, the matter of negative curvature provided by the source moves at a constant velocity at force balance to produce useful
work against the gravitational field of the gravitating body to provide apparatus useful to produce levitation and propulsion. In
one embodiment, electromagnetic force is converted to gravitational force and subsequently converted to a mechanical force
which provides the useful propulsion or levitation. In alternative embodiments, the electromagnetic force is provided by a genera-
tor driven by steam, for example, where the energy of the strong nuclear force provides the heat energy to provide the steam. Alt-
ernatively, the heat energy is converted directly to the electromagnetic force via a generator such as a thermionic generator.
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APPARATUS AND METHOD FOR PROVIDING AN ANTIGRAVITATIONAL
FORCE |
of which the following is a specification:
FIELD OF THE INVENTION
The present invention relates to methods and apparatus for providing repulsion,
in particular methods and apparatus for providing antigravitational repulsive forces
adapted to provide propulsion and levitation.
BACKGROUND OF THE INVENTION .
The attractive gravitational force has been the subject of investigation for |
centuries. The development and current state of understanding is illustrated by the
excerpt presented in Appendix I. Traditionally, gravitational attraction has been .
investigated in the field of astrophysics applying a large scale perspective of
cosmological spacetime, as distinguished from currently held theories of atomic and
subatomic structure. However, the disunification of the analysis of matter on the
basis of scale results in inconsistencies and unpredictabilities in the resulting model,
when compared to actual experimental measurements.
In Newtonian gravitation, the mutual attraction between two particles of masses
m1] and m2 separated by a distance r is

mim
F=G—ir? (1.1)
T

where G is the gravitational constant, its value being 6.67 x 1011 Nm?2 kg2,
Although Newton'’s theory gives a correct quantitative descnpnon of the
gravitational force, the most elementary feature of gravitation is still not well
defined. Which feature of gravitation is then the most important, if we were to
consider the most fundamental? By comparing Newton’s second law,

F=ma 12
with his law of gravitation, we can describe the motion of a freely falling object by
using the following equation:

GMg
where mj and mg represent respectively the object’s inertial mass (mversely
proportional to acceleration) and the gravitational mass (directly proportional to
gravitational force), Mg is the gravitational mass of the Earth, and r is the position
vector of the object taken form the center of the Earth. The above equation can be

rewritten as
g GM
_ m )
a= m; ( r2 J (1 4)

Extensive experimentation dating form Galileo’s Pisa experiment to the present has
shown that irrespective of the object chosen, the acceleration of an object produced by
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the gravitational force is the same, which from eq. (1.4) implies that the value of
mg/mj should be the same for all objects. In other words, we have
mg/mj = universal constant. (1.5)

In physics, the discovery of a universal constant often leads to the development
of an entirely new theory. From the universal constancy of the velocity of light c, the
special theory of relativity was derived; and from Planck’s constant h, the quantum <
theory was deduced. Therefore, the universal constant mg/mj should be the key to
the gravitational problem. The theoretical difficulty with Newtonian gravitation is
to explain just why relation (1.5) exists implicitly in Newton's theory as a separate law
of nature besides (1.1) and (1.2). Furthermore, discrepancies between certain
astronomical observations and predictions based on Newtonian celestial mechanics - ‘
exist, and they could not be reconciled until the development of Einstein’s theory of
General Relativity which can be transformed to Newtonian gravitation on the scale
in which Newton’s theory holds.

On a cosmological scale, the Theory of General Relativity is correct
experimentally; however, it is based on a flawed dynamic formulation of Galileo’s
law. Einstein took as the basis to derive his gravitational field equations a certain
kinematical consequence of that law which he called the “Principle of Equivalence”
which does not provide a quantum gravitational theory. Further discussion of

- Einstein’s “Principle of Equivalence” is provided by the excerpt of Appendix IL

Furthermore, General Relativity is a partial theory in that it deals with matter on" " -
cosmological scale, but not an atomic scale. All gravitating bodies are composed of
matter and are collections of atoms which are composed of fundamental particles
such as electrons, which are leptons, and quarks which make up protons and
neutrons. Gravity originates form the fundamental particles. The prevailing theory
of the properties of atoms and subatomic physics is quantum mechanics, and the
unification of quantum theory with General Relativity is a notoriously problematic
union. In contemporary theories there is no satisfactory theory of quantum gravity,
and even the simplest application of quantum mechanics to the geometric structure
of spacetime faces serious conceptual difficulties. Implicit to its success is that the
quantum gravity theory must specify the cosmological constant. The cosmological
constant can be defined most simply as the energy density of a vacuum, that is, the
amount of energy in a unit volume of empty space. The gravitational equation
which contains the cosmological constant is (Eq. 52.08) of Appendix VI. According to
quantum mechanics the value of the cosmological constant may not be zero, and in
principle, the vacuum energy density can assume any value positive or negative, and
current ideas about particle physics and gravity suggest that it is quite large. The
cosmological constant can be approximately measured by looking for the
characteristic effects that a nonzero vacuum energy density would have on the
geometric structure of spacetime as produced by Einstein’s General Relativity. No
such effects have been seen, and present observational limits imply that the s
cosmological constant is smaller that the theoretical expectations by a staggering factor

of about 10-120. The only way to account for this enormous discrepancy between
theoretical expectation and experimental reality without rejecting either quantum
mechanics, General Relativity, or both, is to assume that the parameters of nature are
involved in an extraordinarily accurate and utterly mysterious conspiracy resulting
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in cancellation between the various contributions to the vacuum energy density.
Work on the cosmological constant is based on procedures by Stephen Hawking and
his collaborators for calculatmg a quantum mechanical wave function describing the
spatial geometry of the universe. This theory states that quantum mechanical '
processes in our universe create and destroy other universes which are coupled to
our universe and each other through wormholes. Further discussion of Hawking's

theories and Sidney Coleman’s extension comprising a theory of variable, o, where

the wormholes affect the value of physical parameters via the o’s is contained in
Appendix III.

However, the Hawking approach relies on shaky formalisms and many Untested
assumptions. It comes up with the desired result, a zero cosmological constant, but in

‘principle, because Coeman’s scheme is a method for predlctmg the values of the o’s
and as all parameters of nature are functions of these, it is a theory of parameters.
The theory has failed at prowdmg the correct value for any other fundamental
parameter, even one that is zero.
SUMMARY OF THE INVENTION
Overview of the Novel Theoretical Basis
While the inventive methods and apparatus described in detail further below

_may be practiced as described, the following discussion of a novel theoretical basis of

the invention is provided for additional understanding.

The effects of gravity preclude the existence of inertial frames in a large region,
and only local inertial frames, between which relationships are determined by gravity
are possible. In short, the effects of gravity are only in the determination of the local
inertial frames. The frames depend on gravity and the frames describe the spacetime
background of the motion of matter; therefore, differing from other kinds of forces,
gravity which influences the motion of matter by determining the properties of
spacetime is itself described by the metric of spacetime. The gravitational method and
apparatus of the present invention provides a metric over all scales form atomic to
cosmologxcal where the cosmological constant is zero. It is demonstrated that gravity
arises form the two-dimensional manifold of the mass of fundamental particles that
makes up all matter of the universe.

The novel atomic model of the present invention, which is described in detail in
co-pending U. S. Patent Applications (Serial Nos. 07/341.733 and 07/345,628), both
entitted ENERGY/MATTER CONVERSION METHODS AND STRUCTURES, filed
on April 21, 1989 and April 28, 1989 respectively, and incorporated herein by
reference, provide the correct basis to solve Einstein’s field equations of General
Relativity: the gravitational mass and the inertial mass of fundamental particles are
equivalent. The gravitational field equations are derived form this principle in
Appendices VI and VII, and atomic and cosmological gravitation are unified when
the existence of the mass as a spatial two-dimensional (three-dimensional spacetime)
manifold is taken into account. ‘

The novel model of the atom is consistent with first principles, and is
summarized as follows. The electron is described by the product of two angular
functions which are spherical harmonics, a time harmonic function, and a radial
delta function forming specific radially quantized orbitals. In order to differentiate
the atomic structure of the novel atomic model from previous atomic models, these
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radially quantified orbitals are referred to as “Mills” orbitals. When applied to atomic
structure, Mills orbitals are electron orbitals. Angular momentum and energy are v
conserved without violation of Maxwell’s equations. The energy of an electron is the
sum of its stored electric and magnetic energies. From the radial delta function, the ~
wavelike properties of the electron arise naturally. The angular harmonics give rise
naturally to spin and orbital angular momentum, spin-orbital coupling and selection =~
rules for the absorption of emission of electromagnetic radiation. A Mills orbital is #
spherical, and the radius increases with the absorption of electromagnetic energy. .
When the electron is ionized the radius of the Mills orbital goes to infinity; the
electron is a plane wave with the de Broglie wavelength. v_

The electric field of an electron of a Mills orbital is zero inside the orbital and is
the field at a point charge at the origin outside of the orbital; thus, electron-electron
repulsions are naturally eliminated in multi-electron atoms. The radii of orbitals in
atoms are calculated for each orbital by setting the centripetal force equal to the sum
of the coulombic and magnetic forces. Thus, the result that isolated Mills orbitals are ™
stable where the coulombic attractive force does not cause the electron to collapse into
the nucleus arises naturally. For all atoms and ions, there exists a central coulombic
force acting on each orbital that is proportional to the net charge (that is the charge
not cancelled by other electrons). A positive central force exists between two

- unpaired electrons which results in pairing in the same shell with spins opposed.

Thus, the Pauli Exclusion Principle arises naturally. A diamagnetic repulsive central - =
force exists between between paired electrons of an inner shell and an unpaired
electron of an outer shell. A four-body problem does not arise because the change in
the centripetal force of the inner shell electrons affected by the outer electron is
exactly balanced by the Lorentzian force provided by the magnetic field of the outer
shell electron. Of course, Hund's Rule arises naturally as a consequence of electrons
as Mills orbitals, with angular harmonic charge density modulation, spatially
orienting to form a spherically symmetric charge density function which is an energy
minimum. Furthermore, as previously stated, the electric field of the electron is
spherically symmetric and is that of a point charge for radial distances greater than
the radius of the radial delta function and is zero inside the shell. This is the basis of
chemical bonding and low temperature fusion, as described in the incorporated
patent application. The nature of the chemical bond is an overlap of Mills orbitals of
participating atoms to produce a minimum of the energy stored in the electric and
magnetic fields. Cold nuclear fusion occurs as a result of cancellation of the
coulombic repulsive force between two nuclei for shorter internuclear distances as
the shell of the individual atomic electrons decreases by a quantized fraction as an
energy hole is resonantly absorbed by the electron. For deuterium the resonance
shrinkage energy is n/2 27.21 eV where n is an integer.

Moreover, the novel atomic model deals with electrons which comprise the
negatively charged fundamental particles, leptons. However, the same principles
apply to the other fundamental particles including quarks. The phenomena of
wavelike properties, spin and orbital angular momentum, and selection rules are
identical to those of leptons as is the boundary conditions which precludes radiation;
thus, quarks have equivalent spacetime charge density functions as leptons. Also, the
weak and strong nuclear forces are electromagnetic in nature as is the spin-pairing,
diamagnetic, and bonding forces of leptons.
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Mass exists as Mills orbitals, each of which comprises the product of two spherical
harmonic angular functions, a time harmonic function, and a radial delta function.
From the radial delta function which determines matter to be a two-dimensional
space manifold (three-dimensional spacetime) gravitation arises. The two-
dimensional manifold possesses positive curvature. This can be demonstrated by the
fact that the angle sum of a geodesic triangle on the surface of a sphere exceeds 180°.
Euclidean plane geometry asserts that in a plane, the angles of a triangle add up to
180°. This is the definition of a flat surface. The curvature, K, of ordinary matter
with positive curvature is given by K = 1/ro2 where 1o is the radius of the radial delta
function. Because essentially all ordinary matter exists in the form of Mills orbitals as
leptons and quarks which exist in curved spacetime, all macroscopic configurations of -
ordinary matter exist in curved spacetime. Furthermore, the total curvature of
spacetime is the sum of the contributions from each Mills orbital, termed a "Mills"
orbital as defined in the previously filed applications.

All matter exists as Mills orbitals which comprise mass confined to a three-
dimensional spacetime. The surface is spherical; thus, the spacetime is curved with
constant curvature. The effect of this "local" curvature on the non-local spacetime is
to cause it to be Riemannian as opposed to Euclidean. The effect is a function of the
radial distance from the center of the Mills orbital for distances greater than the -~
radius of the Mills orbital and the magnitude of the effect on non-local spacetimé’is
proportional to the total mass of the Mills orbital. Thus, the effect on spacetime is
independent of the Mills orbital radius for spacetxme outside of the orbital.

(According to the novel atomic theory, this feature is symmetrical with the electric
field of an electron of a Mills orbital which is that of a point charge at the center for
radial distances greater than the radius of the shell.) Also, the novel atomic ti&ory
embraces the postulate that the total mass of the orbital is also equlvalent to the
inertial mass from which the theory of General Relativity comprising Riemannian
geometry of spacetime is derived.

In the theory of General Relativity, Einstein's field equations give the
relatlonsh1p whereby matter determines the curvature of spacetime which is the
origin of gravity. The definitive form of the equations are as follows:

1 -8nG

Ruv - 5 guvR =- _EZ— Tuv (1.6)
where
and Ty is the stress-energy-momentum tensor of matter. The derivation of the
above equations which are discussed in more detail in Appendices VI and VII is based
on the principle of the equivalence of the inertial and gravitational mass provided by
the present novel atomic model and the principle that all particles including light
follow geodesics.

The Schwarzschild metric is the solution of the boundary value problem of
Einstein's gravitational field equations applied to a Mills orbital, where a

discontinuity in mass is equated with a discontinuity of the curvature of spacetime.
Thus, the present novel atomic model and General Relativity are unified ina
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quantum theory of gravitation which is valid on any scale and is hereafter referred to
as the Mills Quantum Gravitational Theory.

The present invention unites the three forces, electromagnetic, gravitational, and =~

mechanical and permits their interconversion. As examples, the Meisner effect is the
phenomenon whereby a superconductor of the present invention converts a
gravitational force into an electromagnetic force, and the energy of the strong nuclear

force is released as heat during Coulombic Annihilation (cold) Fusion as discussed in "

the above incorporated prior patent applications. The heat produces electricity
directly via a thermionic of photovoltaic generator, or the heat produces a
mechanical force via steam which turns a generator to create electricity. The
electricity provides an electromagnetic, electrostatic, or magnetostatic force which by a
device of the present invention warps matter into negative curvature such that an
antigravitational force is produced with a gravitating body. The antigravitational
force provides mechanical force, useful for propulsion or levitation.
Antigravity Methods and Means
The preferred embodiment of the present invention is a propulsion and

levitation device comprising a source of matter, a means to form the matter into a
spatial two-dimensional manifold of negative curvature, and a means to produce a
force on the negatively curved matter where the force balances the repulsive

- gravitational force between the negatively curved matter and a gravitating body. In
response to the force balance, the matter of negative curvature moves at constant
velocity to produce useful work against the gravitational field of the gravitating body * .

where the constant velocity including zero velocity, provides the spacetime manifold *

of negative curvature which is a solution to the three-dimensional wave equation
whose spacetime Fourier transform does not contain components synchronous with
waves traveling at the speed of light. Therefore, the manifold is nonradiative.

The spacetime manifold is based on the present novel atomic model which
unites Newtonian mechanics, Maxwell's equations, atomic theory, General
Relativity, and the weak and strong nuclear forces. Thus, the present invention of a
propulsion and levitation apparatus comprises the conversion of an electromagnetic "
force to a gravitational force to a mechanical force, which provides a useful o
propulsion and levitation. In one embodiment the electromagnetic force is provided = .
by a generator driven by a mechanical force provided in response to steam, where
binding energy of the strong nuclear force is converted to mechanical energy ,
indirectly via steam, for example, or directly via a thermionic generator, for example.
Thus, unification and interconversion of the fundamental forces is provided by the
present novel atomic model and propulsion and levitation apparatus.

In one embodiment the antigravity propulsion and levitation means comprises a
means to inject particles, such as electrons, as plane waves, which serve as the matter,
and further includes a guide of the plane waves. Negative curvature of the injected
and guided matter is effected by applying a force on the matter. The applied force is
provided by one or more of an electric field, a magnetic field, or an electromagnetic
field. A second force on the negatively curved matter is applied in the direction of the
gravitational force. This second force is provided by one or more of an electric field, a
magnetic field or an electromagnetic field. In a preferred embodiment, the force in

the gravitational direction is equal to the repulsive, antigravity force which develops " :

between the gravitating body and the matter due to the negative curvature of the
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guided matter. The repulsive force of the gravitating body is then transferred to the
guide (source of the second force) which further transfers the force to the attached
structure to be accelerated or levitated. o
In a preferred embodiment of a propulsive device, a vehicle to be accelerated
comprises an antigravity levitating device and a flywheel which rotates about its axis.
The antigravity force provides pure radial acceleration when the vehicle's
gravitational forces are equally exceeded. An imbalance of central force applied to the
vehicle will cause it to tilt. By virtue of the angular momentum of the spinning
flywheel a tangential acceleration is produced which conserves angular momentum.
Then high acceleration and velocity are provided by accelerating the structure along a
hyperbolic path around a gravitating body such that the structure is accelerated to ~ ~

‘high velocity.

BRIEF DESCRIPTION OF THE DRAWING

These and further features of the present invention will be better-understood-by
reading the following Detailed Description of the Invention taken together with the
Drawing, wherein:

Fig. 1 is a two-dimensional graph showing the cross-section of the magnetxc
potential and the corresponding magnetic field lines (arrows) at a point along the
channel of guiding and field generating means of Fig. 4;

Fig. 2 is a three-dimensional graph which shows the magnitude of the electric
force in the z direction due to the electric potential function, xyz and the magnittide
of the magnetic force in the z direction due to the magnetic potential function, xy
where the electron beam propagates in the z direction;

Fig. 3 is a graph showing the spatial two-dimensional curved manifold which is
the Mills orbital that propagates along the channel of the electron guide means of Fig.
4

Fig. 4 is a drawing of a system of antigravity propulsion and levitation means
according to one embodiment of the present invention;

Fig. 5 is a schematic of forces of gravitation, antigravitation, and angular
momentum acting on a vehicle according to one embodiment of the present
invention; '

Fig. 6 is a drawing of an experimental apparatus according to one embodiment of
the present invention to produce electrons of negative curvature with concomitant
production of antigravity forces;

Fig. 7 is a drawing which shows the distribution of negatlve curvature and
antigravitational forces in a relativistic electron beam following a pass through a
quadrapole magnetic triplet of the apparatus of Fig. 6; and

Fig. 8 is a block diagram of an antigavitational repulsion device powered by a
Coulombic Annihilation (cold) Fusion system according to one embodiment of the
present invention. S

DETAILED DESCRIPTION OF THE INVENTION '
- As previously stated, the model of fundamental particles, i.e., leptons and quarks,
which provides the basis for a novel unified gravitatxonal théory presented herein is"
the novel atomic model described in the previous U. S. Patent Applications entitled
ENERGY/MATTER CONVERSION METHODS AND STRUCTURES which are

incorporated by reference.
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The novel atomic model includes electrons which comprise the negatively
charged fundamental particles, leptons. However, the same principles apply to the
other fundamental particles including quarks. The phenomena of wavelike
properties, spin and orbital angular momentum, and selection rules are symmetrical
with those of leptons as is the boundary condition which precludes radiation; thus, 4
quarks have spacetime charge density functions equivalent to leptons. Moreover, the

weak and strong nuclear forces (the spin pairing, diamagnetic, and bonding forces of
leptons), are electromagnetic in nature.

DETAILED APPLICATION OF THE NOVEL THEORETICAL BASIS

Space, Elementary Particles, and the Forces

The nucleus comprises nucleons, the protons and neutrons. Each nucleon
comprises three quarks as Mills orbitals analogous to the case of the electrons of the
three-electron atom of the novel atomic model. The massive vector bosons W+, W-,
and 20 are spin-1 massive photons and are due to the weak nuclear force. W+ and W-
carry the energy of the spin pairing weak nuclear force and z0 carries the energy of the
diamagnetic weak nuclear force.

The strong nuclear force binds quarks together in the proton and neutron, and
binds the protons and neutrons together in the nucleus of an atom. The strong force
is due to the field of a spin-1 particle called a gluon. The gluon is analogous to the

- standing traveling photonic wave that exists inside of a Mills orbital of a lepton when

it absorbs a photon or an energy hole as described by the novel atomic theory. The
gluon maintains the quarks in Mills orbitals and is responsible for force balance. The
nucleon binding energy of the strong force which is released by Coulombic
Annihilation Fusion of the novel atomic model is analogous to the energy released
in the chemical bond as Mills orbitals overlap, and the total energy stored in the
electric and magnetic fields is minimized.

The rules for binding of quarks by gluons is confinement which provides for
conservation of angular momentum and energy, a minimization of the energy, and
absence of spacetime Fourier components of the charge density functions
synchronous with waves traveling at the speed of light; thus, there is no radiation. It
always binds particles together into combinations that have no color. The “colors” of
gluons and quarks are red, green and blue. A red quark is joined to a green and blue
quark by a “string” of gluons (red + green + blue = white). Such a triplet constitutes a
proton or a neutron. :

Space has an intrinsic impedance of 120n = 377 ohms given by the square root of
the quotient of the permeability and permittivity of free space. It provides a limiting
speed of c for the propagation of any wave including gravitational and
electromagnetic waves. It further provides fields which match boundary conditions.
Matter/energy acts on space and space acts on matter/ energy. Thus, a spatial two-
dimensional manifold of matter results in a gravitational field in space; a three-
dimensional spacetime manifold of current gives rise to a magnetic field in space; a
spatial two-dimensional manifold of charge gives rise to an electric field in space.
Thus, General Relativity and Maxwell's equations are valid on any scale.
Furthermore, the existence of matter with a determined mass as a three-dimensional
spacetime manifold that is charged maximizes the volume of space to surface of
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matter ratio. This gives an energy minimum of the resulting gravitational, electric,
and magnetic fields.

Matter/energy are interconnectable and are in essence the same entity with
different boundary values imposed by spacetime where the matter/energy has a-
reaction effect on spacetime. The intricacy of the action/reaction is evident in that all
matter/energy obeys the three-dimensional wave equation, and the magnetic,
coulombic, photonic, and gravitational fields can be derived as a boundary value
problem of the wave equation of spacetime where space provides the respective force
fields for the matter/energy. That spacetime is four-dimensional is evident because
the fundamental forces of gravity and coulombic attraction which are time dependent
have a one over distance squared relationship which is equivalent to the distance
dependence of the area of a spherically symmetric wavefront which carries the forces
at the limiting speed of light provided by spacetime. v ,

The action/reaction relationships of the third fundamental force, the mechanical
force is given by Newton’s Laws which provide the motion of matter including
charged matter, which can give rise to gravitational, magnetic, and photonic fields.
The action/reaction provided by forces in one inertial frame is given in a different
inertial frame by the Lorentzian Transformations of Special Relativity which are
valid for Euclidean spacetime and are a consequence of the limiting speed of light,

- For example, the magnetic field in on inertial frame is given as a coulombic field, in

another as a consequence of their relative motion. The presence of matter causes the
geometry of spacetime to deviate from Euclidean which is manifest as a gravitational
field. The gravitational equation is derived for all scales from the present novel
atomic model where spacetime is Riemannian.

The provision of the equivalence of inertial and gravitational mass by the present
novel model of the atom permits the correct derivation of the General Theory given %
in Appendices VI and VIL. And, the former provision of the two-dimensional nature
of matter permits the unification of atomic and cosmological gravitation. The
unified theory of gravitation is derived by first establishing a metric. The
mathematics of the development of the metric as general tensor analysis is given in
Appendices I and IV and the principles of covariance of equations are given in
Appendix IV. Related remarks on General Relativity Principles are mduded in
Appendix V.

A space in which the curvature tensor has the following form:

R yv,ap =K @ vosup = 8 uas vp (1.8)
is called a space of constant curvature, it is a four-dimensional generalization of
Lobachevsky space. The constant K is called the constant of curvature. The curvature -
of spacetime will be shown to result form a discontinuity of matter confined to two"
spatial dimensions. This is the property of all matter as Mills orbitals. Consider an
isolated Mills orbital and radial distances, r from its center. For r less than ro where :
Io is the radius of a Mills orbital, there is no mass; thus, spacetime is flat or Euclidean.
The curvature tensor applies to all space of the inertial frame tonsidered; thus, for r
less than ro, K = 0. At r = 1o there exists a discontinuity of mass of the Mills orbital.
This results in a discontinuity of the curvature tensor for radial distances greater than
or equal to ro. It will be shown below that the dxscontmulty gives rise to a boundary
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value problem of Einstein's gravitational field equations which equate the properties
of matter with the curvature of spacetime.
The equivalence of the inertial and gravitational masses arises directly form the

existence of matter as Mills orbitals. The present derivation of the General Theory of .

Relativity is based on this principle and the principle that all particles including light
follow geodesics. Then the Mills Theory of Quantum Gravitation is given by the
solution of the gravitational field equations of the General Theory of Relativity
described in Appendix VIL

According to the novel atomic model of the present invention, the energy of a
vacuum is zero; thus, the cosmological constant of the model is zero as demonstrated
in Appendix VI. This is the exact experimentally determined value. The present

novel atomic model, unifies atomic theory and gravitation on a cosmological scale. It

is demonstrated in Appendix VII that the solution of Einstein’s field equations as a
boundary value problem of a Mills orbital unifies atomic theory and the General

Theory of Relativity on an atomic level to provide a completely unified gravitational

theory for spacetime of all scales. The application of the relevant equations are
provided in Appendices VI and VII.

The solution of the gravitational field equation given in Appendix VII permits a.

result of the opposite sign. The positive result for o of equation (57.37) of Appendix
VI arises from positive curvature, and a negative result arises form negative
curvature of matter. Thus, antigravity can be created by forcing matter as Mills
orbitals, into negative curvature. A fundamental particle with negative curvature
would experience a central but repulsive force with a gravitating body comprised of

matter of positive curvature. The antigravity force provides a mechanical force; thus,

production of matter with negative curvature is the basis of a propulsive means. The
propulsive means comprises a source of fundamental particles such as electrons
(which are leptons) where the fundamental particles are forced to be essentially plane
waves of matter. The plane wave nature of matter results as a Mills orbital absorbs
energy to cause the radius to go to infinity as described in the previous patent
application. The plane waves of matter are accelerated and formed (or warped) into
negative curvature by one or more of an electric field, a magnetic field or an .
electromagnetic field such as a laser beam applied parallel or transversely to the plane
wave of matter or such as an evanescent field produced by a totally.internally ’
refracted electromagnetic wave traveling in a fiberoptic cable.

The antigravity force which arises is transferred to the source means of the fields
and is further transferred to the structure to be accelerated or levitated due to the
latter means rigid attachment to the structure.

According to the present invention, the force generated by the antigravity
levitation/propulsion means can be calculated rigorously by solving Einstein’s field
equations as a boundary value problem for a three-dimensional spacetime manifold
of negative curvature which is produced by the apparatus. However, forces in the
limit can be obtained as follows. Consider a negative solution to the variable o of
equation (57.37). The negative solution arises naturally as a match to the boundary
condition of matter with negative curvature. Furthermore, matter having negative ~
curvature would occupy a diminished quantity of four-dimensional spacetime, as A
compared to matter of positive curvature. The surface to volume ratio of a sphere is

e
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a minimum. In effect p of equation (57.38) would increase. Consequently, the
integral of equation (57.37) is approximately of the form

2
———m4: 2 (19

where s is the space defined by the boundaries of he matter of negative curvature.
The presence of a three-dimensional spacetime manifold (spatial two-dimensional
manifold) in four-dimensional spacetime results in curved nonlocal spacetime
which is the origin of gravity, and a two-dimensional spacetime manifold (spatial
one-dimensional manifold) in four-dimensional spacetime results in infinite gravity,
a singularity which is a black hole. The sign of the curvature. For the case of
negative curvature, the antigravity force with a gravitating body can be increased by

“increasing the intensity of negative curvature.

Further according to the present invention, negatively curved matter is created by
“jonizing” fundamental particles to become plane waves. As described in the
previous applications, Mills orbitals can absorb electromagnetic energy. As photons
are absorbed the radius of a Mills orbital expands from the ground state with radius ro
tonrg wheren =2, 3, 4, ...~. As n goes to infinity, the radius r goes to infinity, and
the Mills orbital becomes a plane wave. Ionization occurs when sufficient
electromagnetic energy has been absorbed to produce a plane wave of a Mills orbital.

" The ionization energy can be provided by applying a large potential to or by heating

or irradiating a cathode. In the latter case, photocathodes irradiated with contirtuous
wave or pulsed lasers can generate very bright, high current density beams of
electrons. Photocathodes, thermionic cathodes, and cold cathodes are described by
Orttinger, P., et al., Nuclear Instruments and Methods in Physics, Research, A272, 264-
267 (1988) and Shefﬁeld R, et al., ibid, 222-226 which are in¢orporated herein by
reference. The resulting plane waves are caused to propagate through space and to
acquire negative curvature by traversing a selected field as created by a field source
means. The field source meafis provides one or more of an electric field, a magnetic
field, or an electromagnetic field. The resulting spacetime manifold is three-
dimensional (spatial two-dimensional manifold and time dependent) and is a
solution to the three-dimensional wave equation that follows:

1
(VZ+ o7 2) Alx,y,z,t)=0 (1.10)

Furthermore, the manifold propagates through space and is decelerated by the
antigravity force with a gravitating body and is accelerated by the propagation force
provided by the source means. The resulting spacetime manifold of negative
curvature which arises from the forces acting on the matter is such that its spacetime
Fourier transform does not possess waves synchronous with those traveling at the
speed of light. The manifold is a Mills orbital which prowdes an antlgrawtatlonal
force.

Matter (as a Mills orbital) of negative curvature which moves at constant velocity
has a spacetime Fourier transform which does not possess Fourier components
synchronous with waves traveling at the speed of light. Con51der the three-
dimensional spacetime manifold

8 [z - £(x) g(y) - K(©)] (1.11)
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where K(t) = Vt; V is a constant.
The spacetime Fourier transform is given as follows:

F(kx) Glky) 8 (w - k- v) (1.12)
where F(kx) and G(ky) is the Fourier transform of f(x) and g(y), respectively.

The only nonzero Fourier components are for
W W
k= -
vceosg €

where 6 is the angle between V and K. Thus, the spacetime Fourier transform has no

components synchronous with waves at the speed of light; therefore, the manifold is
nonradiative.

For example, the Fourier transform of the three-dimensional spacetime manifold
8 (z - xy - vt) is given as follows:
2 -
n—k/; exky/kz 5w - k- 9)

which has no components synchronous with waves traveling at the speed of light;
thus, it is nonradiative.

In a preferred embodiment the manifold is given by the following function
3 [z-x(z) y(z) - vt
where vz is constant velocity in the z direction at force balance. The manifold is
produced by a quadrapole electric field at infinity or a quadrapole magnetic field at
infinity, and a constant force of equal magnitude and opposite direction of the
antigravity force; thus, the matter of negative curvature moves with constant
velocity vz.
THE EMBODIMENT

In one embodiment according to the present invention, the apparatus for
providing the antigravitational force comprises a means to inject electron plane
waves and a guide means to guide the propagation of the plane waves. Acceleration
and forming negative curvature is effected in the propagating guided electrons by

application of one or more of an electric field, a magnetic field, or an electromagnetic

field by a field source means. A repulsive force of interaction is created between the
propagating electrons of negative curvature and the gravitational field of a
gravitating body which comprises matter of positive curvature where the field source
means provides an equal and opposite force to the repulsive force. Thus, the
interactive force is transferred to the field source and the guide which further
transfers the force to the attached structure to be accelerated.

In the embodiment, the antigravity means shown schematically in Fig. 4
comprises an electron beam source 100, and an electron accelerator module 101, such
as an electron gun, an electron storage ring, a radiofrequency linac, an introduction
linac, an electrostatic accelerator, or a microtron. The beam is focused by focusing
means 112, such as a magnetic or electrostatic lens, a solenoid, a quadrapole magnet,
or a laser beam. The electron beam 113, is directed into a channel of electron guide
109, by beam directing means 102 and 103, such as dipole magnets. Channel 109,
comprises a field generating means to produce a constant electric or magnetic force in
the direction opposite to direction of the antigravity force. For example, given that

b+

=
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the antigravity force is negative z directed as shown in Fig. 4, the field generating
means 109, provides a constant z directed electric force due to a constant electric field
in the negative z direction via a linear potential provided by grid electrodes 108 and
128; given that the antigravity force is positive y directed as shown in Fig. 4, the field
generating means 109, provides a constant negative y directed electric force due to a
constant electric field in the negative y direction via a linear potential provided by the
top electrode 120, and bottom electrode 121, of field generating means 109. Given that
the antigravity force is positive y directed, the field generating means 109, provides a
constant negative y directed magnetic force due to a constant dipole magnetic field in
the x direction for an electron beam traveling in the z direction.

In one embodiment the field generating means 109, further provides an electric
or magnetic field at infinity which warps the electrons of the electron beam 113, into
negative curvature to produce the antigravitational force with a gravitating body In
a preferred embodiment the electric potential of the warpmg electric field is given as
follows:

xyz + cp where c is a constant and p is either x, y, or, z and is the direction
opposite the force of antigravitation; so, the corresponding electric force on the
electron is opposite the antigravitational force as described previously. The electric
field is given by the negative of the gradient of the potential. The electric warping

. force in the z direction is shown in Fig. 2.

In a preferred embodiment the magnetic potential of the warping field is glven as
follows:

Xy + cp where c is a constant and p is either x, y, or z so that the corresponding
constant dipole magnetic field produces a constant magnetic force in the direction
opposite to the force of antigravity as described previously. The potential function
and field lines are shown in Fig. 1. The magnetic field is given by the negative
gradient of the potential. The z directed warpmg force on an electric plane wave
propagating in the positive z direction is shown in Fig. 2.

The electric and magnetic warping fields force the electron plane wave into the
manifold of negative curvature given as follows: ‘

8 [z - x(2) y(z) - vi]

This manifold is shown schematically in Fig. 3. e

The velocity, V, of the manifold is a constant due to the equality of the constant '
electric or magnetic force and the antigravitational force which arises as an
interaction between the gravitating body and the manifold of negative curvature.
The constant force provides constant levitation or propagation work against the
gravitational field of the gravitating body as the manifold propagates along the ‘-
channel of the guide means and field producing means 109. The resulting work'is
transferred to the means to be propelled or levitated via its attachment to ﬁeld
producing means 109.

The constant electric or magnetic force is variable until force balance with the
antigravitational force is achieved. In the absence of force balance, the electrons will-
be accelerated and the emittance of the beam will increase. Also, the accelerated
electrons will radiate; thus, the drop in emittance and/or the absence of radiation is
the signal that force balance is achieved. The emittance and/or radiation is detected
by sensor means 130, such as a photomultiplier tube, and the signal is used ina
feedback mode by analyzer-controller 140 which varies the constant electric or
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magnetic force by controlling the potential or dipole magnets of (field producing)
means 109 to control force balance to maximize antigravitational work.

In another embodiment the negative curvature of the electrons of the electron
beam 113 is produced by the absorption of photons provided by a photon source 105, s
such as a high intensity photon source, such as a laser. The laser radiation can be
confined to a resonator cavity by mirrors 106 and 107.

In a preferred embodiment the laser radiation or the resonator cavity is oriented . -
relative to the propagation direction of the electron plane wave so that the selection
rule angular relationship for the quadrapole transition with zero change in angular
momentum is maximized for radiation of a given multipolarity. For example, given
(that) the direction of propagation of the beam 113 is in the z direction of Fig. 4, and
the radiation is of multipolarity M1 (magnetic dipole radiation), the orientation of
the laser radiation or resonator cavity is along the x or y axis (i.e., 90° to the electron
beam); given the direction of propagation of the beam 113 is in the z direction, and
the radiation is of multipolarity E3 (electric quadrapole radiation), the orientation of
the laser radiation or resonator cavity is along the z axis (i.e., 0° to the orientation of
the electron beam).

Following the propagation through field generating means 109 in which
antigravity work is extracted from the beam 113, the beam 113, is directed by beam

- directing apparatus 104, such as a dipole magnet into electron-beam dump 110.

In a preferred embodiment, the beam dump 110 is replaced by a means to recover
the remaining energy of the beam 113 such as a means to recirculate the beam or ~ ~ ~
recover its energy by electrostatic deceleration or deceleration in a radio frequency-
excited linear accelerator structure. These means are described by Feldman, D. W, et
al., Nuclear Instruments and Methods in Physics Research, A259, 26-30 (1987) which
is incorporated by reference.

The present invention comprises high current and high energy beams and
related systems of free electron lasers. Such systems are described in the following
references which are incorporated herein by reference: ‘

Nuclear Instruments and Methods in Physics Research, A272, (1,2), 1-616 (1988)

Nuclear Instruments and Methods in Physics Research, A259, (1,2), 1-316 (1987)

In atoms or in free space, Mills orbitals satisfy force balance. Thus, an electron as
a plane wave is accelerated by the force of an electric field, and a nonradiative Mills
orbital of negative curvature moves at constant velocity and exists when the forces of 7
absorbed photons, shaping/warping forces, the propagation acceleration forces, and
the repulsive gravitational force between the Mills orbital and a gravitating body .
comprising matter of opposite (positive) curvature exactly balance. The Mills orbital =~ *
does constant antigravity work as it propagates along the guide where the gravitating
body’s and the Mills orbital’s curvatures are essentially constant over the time of '
interaction of the gravitational forces.

For a propagation electric field strength of 109V/m and a gravitational interaction :»
of 1 meter, the antigravity work of the electron is 1 GeV.
The propulsion power available for guide or a series of guides (109 of Fig. 4)

carrying a total of 1000 Amps with a repulsive gravitational interaction force-distancé;""‘
product per electron of 1 GeV is given as follows:

o
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10%ev -19 1 electron

T % 1.6(10) "7 J/ev X 1000 ¢/sec X ———=g =
electron 1.6(10) 19.

1012] /sec = one terawatt
The time to accelerate a structure such as a vehicle having a mass of 500,000 kg to a
velocity of 1000 m/sec is given as follows:

5 % X 500,000 X (1000 m/sec)? =25 X 10117
25x1011
1012]/sec
- Thus, the antigravity force produced by the antigravity apparatus according to the
present invention can be applied to accelerate large vehicles or to levitate any large
object.

10 In a further embodiment, the force provided by the antigravity apparatus
according to the present invention is central with respect to the gravitating body.
However, acceleration in a direction tangential to the gravitating body’s surface can be
effected via conservation of angular momentum. Thus, an accelerated structure such
as an aerospace vehicle to be tangentially accelerated possess a cylindrically or

15  spherically symmetrically movable mass having a moment of inertia, such as a
flywheel device. The flywheel is driven with angular motion by a driving device
which is powered and energized by an electric motor and an electric energy source
means such as a fusion reaction with a thermionic or steam generator, or batteries.
The driving device'provides angular momentum to the flywheel. The vehicle is

20 levitated using antigravity means to overcome the gravitational force of the
gravitating body where the levitation is such that the angular momentum vector of
the flywheel is parallel to the central vector of the gravitational force of the
gravitating body.

The angular momentum vector of the flywheel is forced to make a finite angle

25  with the central vector of gravitational force by tuning the symmetry of the levitating
(antigravitational) forces provided by antlgravxty apparatus. A torque is produced on
the flywheel as the angular momentum vector is reoriented with respect to the said
central vector due to the interaction of the central force of gravity of the gravitating
body, the force of antigravity of the antigravity means, and the angular momentum

30 of the flywheel device. The resulting acceleration which cdnserves angular
momentum is perpendicular to the plane formed by the central vector and the
angular momentum vector. Thus, the resulting acceleration is tangential to the
surface of the gravitating body.

The equation that describes the motion of the vehicle with a moment of inertia I,

35 a spin, moment of inertial I, a total mass m, and a spm frequency of its flywheel
device of S is given as follows:

= mgl
Is¢

¢~E&1 mgl gl
IS " mr2s 125

.250 seconds = 250 milliseconds

+1 ¢cose
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where 6 is the tilt angle between the central vector and the angular momentum
vector, g is the acceleration due to gravity of the gravitating body, 1 is the height to

which the vehicle levitates, and ¢ is the angular procession frequency resulting from
the said torque. The schematic appears in Fig. 5.

A calculation of the approximate velocity achieved when the vehicle’s angular
momentum vector is tilted 45° with respect to the central vector is given as follows -
where g =10 m/sec, 1 =5000 m, r = 10 m, S = 25 sec”! |

.~ gl (10)(5000) 20 cycles

T2 (25)(10)2 = second

The linear velocity is the radius times the angular frequency which is given as
follows:

27 20 cycles/second (5000m)sin(45°) = 4.4 X 10° m/sec
This calculation indicates that large tangential velocities are achievable by executing a
trajectory which is vertical followed by tangential (velocities) where the latter motion
is effected by tilting the flywheel. During the tangential acceleration energy stored in
the flywheel is converted to kinetic energy of the vehicle. The equation for rotational
kinetic energy ER and transitional kinetic energy ET are given as follows:

ER = 1/2 w2 where I is the moment of inertia and w is the angular rotational
frequency;
ET = 1/2 mv2 where m is the total mass and V is the transitional velocity.
The equation for the moment of inertia I of the flywheel is given as:

I =X mr? where m is the infinitesimal mass at a distance r from the center of
mass. These equations demonstrate that maximum rotational kinetic energy can be
stored for a given mass by maximizing the distance of the mass from the center of
mass. Thus, ideal design parameters are cylindrical symmetry with the rotating mass
at the perimeter of the vehicle.

Furthermore, according to the methods and apparatus of the present invention
providing antigravitational forces, rapid long distance transport may be realized
where the propelled means, such as a space vehicle, is accelerated to enormous
velocity by executing a hyperbolic trajectory around a gravitating body wherein the
force of gravity of the gravitating body and the antigravity force of the vehicle’

provided by the antigravity means of the present invention accelerate the vehicle to
high velodity.
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EXPERIMENTAL
A high current, high energy electron beam was injected into a quadrapole
magnetic field, and the geometric cross-sectional profile of the beam was recorded by

Carlsten (Carlsten, B. E.; et al., Nuclear Instruments and Methods in Physics Research, :

A272, 247-256 (1988). One embodiment of the antigravity propulsion and levitation

means of the present invention comprises the apparatus of Fig. 6 with the absence of .

the wiggler and the spectrometer. But, in addition the device of the present
invention comprises an electron guide means comprising a channel for the electron
beam and a field generating means 109 of Fig. 4, to produce a constant electric or
magnetic force against the antigravitational force produced on the electrons of
negative curvature following their propagation through the quadrapole triplets, Q1,

- Q2, and Q3 of Fig. 6. Unharnessed antigravity was achieved as demonstrated by the
flame shape of the beam which is a function of current as shown in Fig 7. ( which is
Fig. 11 of the reference). The data indicate that a Boltzmann distribution of negative.
curvature was achieved as is apparent by the flame shape of the beam profile (see Fig.
7). The shape is due to the constant gravitational field of the Earth interacting with a
Boltzmann distribution of manifolds of negative curvature resulting in a Boltzmann
distribution of antigravitational forces and corresponding displacements. The '
maximum vertical deflection of the relativistic electrons by the antigravitational
forces is approximately 5 centimeters over a displacement in the direction of the
electron beam of 50 centimeters. Thus, antigravitational forces comparable to the
electrostatic and electromagnetic forces of the apparatus were achieved. The current
dependence of the efficiency of negative curvature production resulted from -
increased electron-electron interactions with higher beam current which prevented
efficient coupling of the electrons with the quadrapole triplets. However, significant
antigravity was produced at currents of several hundred amperes. Thus, the present
experiment indicates that antigravitational work of the order of 1 GeV per electron is
achievable by the methods and apparatus of the present invention. A

The present invention unifies the three forces, electromagnetic, gravitational, -
and mechanical and permits their interconversion. As further examples of structure
and methods of the present invention, the Meisner effect is the phenomenon
whereby a superconductor of the present invention converts a gravitation force into
an electromagnetic force, and the energy of the strong nuclear force is released as heat
during Coulombic Annihilation (cold) Fusion of the present invention which
produces electricity directly via a thermionic or photovoltaic generator, or the heat -
produces a mechanical force via steam which turns a generator to create electricity, as
illustrated in Fig. 8. The electricity provides an electromagnetic force which by a
device of the present invention warps matter into negative curvature such that an
antigravitational force is produced. The antigravitational force provides useful
propulsion or levitation as a mechanical force. -

In one embodiment shown in Fig. 8, the fusion reactor 210 provides heat via
Coulombic Annihilation Fusion which is converted to steam in heat exchanger 214.
The steam is transferred by connection 216 to turbine 218 which is driven by the
steam to produce electricity to supply the electrical load of the antigravity apparatus
224. Alternatively, the heat is transferred by connection 212 to thermionic power
converter 226 which directly converts the heat to electricity to supply the electrical
load of the antigravity apparatus 224, where the unused heat is returned via
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connection 213. The electrical energy is converted into antigravitational energy by o
antigravity apparatus 228 which provides propulsion and levitation to the vehide to
which the antigravity apparatus 228 is structurally attached by structural connection
206. The fusion reactor 210, the heat exchanger 214, the turbine 218, the power 7
generator 220, and the thermionic power converter 226, are also propelled or levitated
with the vehicle by their respective structural connections 201-206 to the vehicle.
APPENDIX I

Basic Concepts in Relativistic Astrophysics, Li Zhi Fang and Remo Ruffini,
World Scientific Publishing Co. Pte. Ltd.,1983,Chapters 1 and 2, pp 1-70 is
incorporated herein by reference.

APPENDIX I
(The following text is published as Chapter V of the Theory of Space, Time and
Gravitation, 2nd revised ed, Pergamon Press, pp 228-233 (1965) and is incorporated
herein by reference.

According to the present invention, departures from the text have been
made. Additions are underlined and deletions are [bracketed] and initialed.) o

In the theory of gravitation the Principle of Equivalence is understood to
be the statement that in some sense a field of acceleration is equivalent to a o
gravitational field. The equivalence amounts to the following. By introducinga
suitable system of coordinates (which is usually interpreted as an accelerated frame of .
reference) one can so transform the equations of motion of a mass point in a »n
gravitational field that in this new system they will have the appearance of equations. o
of motion of a free mass point. Thus a gravitational field can, so to speak, be replaced, "
or rather imitated, by a field of acceleration. Owing to the equality of inertial and
gravitational mass such a transformation is the same for any value of the mass of the
particle. But it will succeed in its purpose only in an infinitesimal region of space, ~ .
i.e., it will be strictly local. :

In the general case the transformation described corresponds
mathematically to passing to a locally geodesic system of coordinates. As was shown.
by Fermi, it is possible to introduce coordinate systems which are locally geodesic not -
only at one point but also along a time-like world-line.

Thus the principle of equivalence is related to the law of equality of
inertial and gravitational mass, but is not identical with it. The latter is of a general,
non-local character while the equivalence of a field of acceleration and a field of
gravitation exists only locally, ie., it refers only to a single point in space (more
precisely to a spatial neighbourhood of the points on a world-line, which is of the
nature of a time axis). L

The Principle of Equivalence played an important role during the period
before Einstein created his theory of gravitation. We shall now describe and analyse
an argument given by Einstein at that time. -

Einstein illustrated his "equivalence hypothesis" with the example of a
laboratory inside a falling lift. All objects within such a lift appear bereft of their
weight, they all fall together with the lift, with the same acceleration, so that their
relative accelerations vanish even when they are not fixed to the walls of the lift. We
have, according to Einstein, two frames of reference, one inertial, or almost inertial, »
fixed to the Earth and another accelerated, fixed to the lift. In the first, inertial frame, -
there exists a gravitational field - in the second, accelerated frame, it is absent. Thus,
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according to Einstein, an acceleration can replace gravitation or at least a uniform
field of gravitation. Einstein develops this idea further. He proposes to consider both
the accelerated and the unaccelerated frames to be physically completely equivalent
and points out that from such a point of view the concepts of inertial frame and
absolute acceleration cease to have any meaning. e

Let us analyse this view of Einstein's in more detail. First of all the
question arises: What is an accelerated frame of reference and how can it be realized
physically? In the lift example the "frame of reference" was, so to speak, identified
with a certain box, the lift cage. But we have [ : ] learned that even when
gravitation is not taken into account the abstraction of an absolutely rigid body is not
acceptable; when accelerated all bodies will experience deformations which will be
different for different bodies[.] where the effects are given by special relativity.
Therefore a box or a rigid scaffolding [of the kind we discussed in Section 11 when
dealing with inertial frames are] is of no use as a model[s] for an accelerated frame of
reference. Thus in Einstein's reasoning the basic concept of a frame of reference in
accelerated motion remains undefined. This difficulty could be avoided only by
imposing limitations on the magnitude of the acceleration and on the size of the
region of space to be considered. For instance, one could demand the following: the
accelerations allowed are to be so small that in the region of space considered the
deformations resulting from them may be neglected and the notion of a rigid body
may be used. In that case the approximate nature of Einstein's argument becomes
obvious.

Further, Einstein himself stresses that not every gravitational field can
be replaced by acceleration; for this to be possible the gravitational field must be
uniform. This also imposes limitations on the spatial dimensions of the region in
which gravitational and accelerated fields may be approximately equivalent. It is, for
instance, impossible to "remove" the gravitational field around the terrestrial globe;
to do it one would have to introduce some absurdity such as a frame of reference in
"accelerated contraction.”

Einstein also used his Principle of Equivalence in a non-local manner
but his attempt, in a paper published in 1911, to investigate in this way the ‘
propagation of light near a heavy body gave a deflection of a light ray of only half the
amount resulting from his theory of gravitation [see Section 59.] as calculated in
Appendix I. This is connected with the fact that the Principle of Equivalence cannot

possibly lead to the correct form (51.11) for ds2 but at best only the expression (51.10)
which is valid for slow motion[.] where ds2 is the infinitesimal displacement in an

inertial frame which is derived in Appendix VI. Thus, in a non-local interpretation,
the approximate equivalence of fields of gravitation and of acceleration is also

limited. As already mentioned this equivalence exists only for weak uniform fields
and slow motions.

Einstein gave to his principle of equivalence a widened interpretation by
taking it to imply the indistinguishability of fields of gravitation and acceleration and
asserting that from the point of view of this principle it is as impermissible to speak
of absolute acceleration as it is to speak of absolute velocity. To this Einstein related
his "General Principle of Relativity" [which we discussed in Section 49*] (Appendix
V); he used the latter to justify the demand that his equations should be generally
covariant. (The concept of covariance is discussed in Appendix V.) However, [to us]
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such an extended interpretation seems inconsistent. The essence of the principle of
equivalence may be seen in the fact that it allows the introduction of an appropriate i
locally geodesic ("freely falling”) frame of reference, by use of which a uniform o
Galilean space can be defined in the infinitesimal. However this in no way justifies -
conclusions about the equivalence or indistinguishability of fields of acceleration and

of gravitation in finite regions of space. To illustrate the nature of the error

committed in drawing such conclusions let us examine a mathematical example,

which incidentally has a direct bearing on the essence of the present question. All
functions that have bounded second derivatives behave as linear functions in the
infinitesimal. However, this by no means allows one to conclude that all such

functions are indistinguishable in a finite region. But an analogous conclusion, :
namely that fields of acceleration and of gravitation are completely indistinguishable, _
was drawn by Einstein, on the basis of their local equivalence alone.

Such a conclusion even contradicts Einstein's theory of gravitation (
itself. Indeed, if full equivalence between fields of acceleration and of gravitation did *
exist, a theory built on the idea of equivalence would be purely kinematical, which is
by no means the case for Einstein's theory of gravitation. As regards the "General
Principle of Relativity,” [we have already pointed out in Section 49*] it is
demonstrated in Appendix V that such a physical principle is impossible, and also
unnecessary as a basis for the requirement of general covariance, which is the purely
logical requirement of consistency for a theory in which the coordinate system is not
fixed.

Thus, although the principle of equivalence holds in a narrow sense
(approximately and locally) it does not hold in a wider sense. Although the effects of
acceleration and of gravitation may be indistinguishable "in the small," i.e., locally,
they are undoubtedly distinguishable "in the large,” i.e. when the boundary
conditions to be imposed on gravitational fields, are taken into account. The
gravitational potential that is obtained if a uniformly accelerated frame of reference
in introduced is a linear function of the coordinates and therefore does not satisfy the
conditions at infinity, where it should tend to zero. In a rotating frame of reference
the potential of the centrifugal force increases with the square of the distance from
the axis of rotation, and in addition there are Coriolis forces. By these characteristics
it is possible to detect immediately that the “gravitational field" in such frames of
reference is fictitious.

We shall now discuss the example of a uniformly accelerated frame of
reference in somewhat greater detail, taking the theory of relativity into account. In ,
doing this we set aside the question of how an accelerated frame might be realized
and interpret the term "frame of reference” more formally in the sense of "coordinate
system.” In this sense passing to a frame moving with acceleration will mean
subjecting the coordinates to a transformation which contains time non-linearly.

We assume that a true gravitational field is not present so that the
square of the infinitesimal interval has the form

ds2 = 2dt2 - (dx'2 + dy2 + dz?2) (61.01)
where X', y' and z' are Cartesian coordinates and t' the time in some inertial frame
of reference. We perform the coordinate transformation{s]

g
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¢ h g_t £ hg_t 1
X =X CO0s C+ g(COS C_ )
y=y 2=z (61.02)

v_E ] &t z(. 3 g_t.
t—gsmhc +Csmhc

where g is a constant of the dimensions of acceleration. Under the condition

5 %—t <«<1 (61.03)
the previous equations may be written as ‘
x‘=x+:,1,:gt2; y=y; =z t'=t (61.04)
Inserting (61.02) into (61.01) we obtain
ds2 = ( c+ SCZ ) i dt2 — (dx2 + dy2 + dz2) (61.05)
10 The question arises: can this expression be interpreted as the square of the

interval in some inertial frame of reference in which there is a gravitational field?
The answer to this question is also an answer to the question whether, and to what
extent, the Principle of Equivalence is correct.
To find the answer we compare (61.05) with the apprommate expression
15 given by the theory of gravitation.

ds? = (c2 - 2U) dt2 - ( itzj)(dx2+dy2+dz2) (61.06)

where U is the Newtonian potential of a true gravitational field.
Under the condition

lgx|<<c? (61.07)
20 the coefficients of dt? are approximately equal if we take a gravitational potential
given by
U=-gx (61.08)

As for the coefficient of the spatial part of ds2, it will not differ significantly from
unity for intervals for which the quantity
2
+ @—%) (6109

2
dx d
75 2. ay
v2 << o2 © (61.08)

satisfies the inequality
The value (61.08) for the gravitational potential does indeed lead to uniformly
accelerated motion in Newtonian mechanics. For vanishing initial velocity we have
30 constant values of X', y' and z' and approximately

2

1 _
X + 7 gt2 = const. a (61.11)

[+] [This transformation was given by Moller [20].] which describes uniformly
accelerated motion in the coordinates (x, t).
We have made a comparison between two expressions for the square of
. 35 the interval which has shown that a frame of reference in accelerated motion in the
“ absence of gravitation does indeed show an analogy with an inertial frame in'the
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presence of gravitation. However, the same comparison indicates that the analogy is
far from complete, so that there can be no question of full equivalence or
indistinguishability of inertial and gravitational fields. This becomes particularly
clear if one considers the expression (61.05) "in the large," i.e. throughout the whole

of space. In the first place, the coefficient of dt? does not [saitsfy] satisfy the boundary
conditions, since it tends to infinity with x, in the second place that coefficient and
with it the speed of light, become zero on the surface x = -c2 /g; this is inadmissible.

An even more obvious violation of the boundary conditions for the S
metric tensor occurs if the fransformation (35.47) is used. In Newtonian mechanics it
has the significance of introducing a rotating coordinate system. This transformation
leads to the expression (35.48) for ds2 [.]) (35.47) and (35.48) appear in Appendix 1V.)
Here the metric tensor not only fails to satisfy the boundary conditions but, at large
distances from the axis of rotation, also violates the inequalities established in
[Section 35] Appendix IV. The impossibility of interpreting the metric tensor in .
(35.48) as some gravitational field (i.e. in the spirit of the "equivalence hypothesis”) is
clear even from a local point of view, owing to the presence of Coriolis forces.

The example just discussed confirms completely the conclusion stated
above that the "equivalence" between acceleration and gravitation exists only in a
limited region of space, and only for weak and uniform fields and slow motions
(equation (61.08) together with the inequalities (61.07) and (61.10)). But if one
considers the whole of space, true gravitational fields can be distinguished from
fictitious ones caused by acceleration. In Newtonian theory this can be done by using
the boundary condition for the Newtonian potential. In Einstein's theory the
question of distinguishing true from fictitious gravitational fields is most simply
solved if harmonic coordinates are used. Then the components of the metric tensor
must satisfy both the harmonic conditions (53.13) and the boundary conditions
discussed [in Section 54] in Appendix VI. [As will be shown in Section 93,]

Furthermore, harmonic coordinates can be defined uniquely apart from a Lorentz
transformation. Arbitrary coordinate transformations by which fictitious

gravitational fields are introduced, violate the harmonic conditions and the

boundary conditions. Therefore one can take it that the introduction of harmonic
coordinates exclude all fictitious gravitational fields. Thus, if one assumes the :
quadratic form (61.05) to be given, the passage to harmonic coordinates will consist in
the transformation (61.02), accompanied possibly by a Lorenfz transformation. As the
result of such a transition we come back to the quadratic form (61.01), the form of

which indicates the absence of true gravitational fields.

In {the] this discussion [of this section] we did not use general tensor
analysis. Its application to (61.05) would have shown that the fourth rank curvature =~
tensor vanishes and that, therefore, true gravitational fields are indeed absent. :

Let us return to the question of utilizing the principle of equivalence to "
derive the gravitational equations. We have made it clear that it is inconsistent to
interpret this principle in a wider sense as a "General Principle of Relativity." But
this does not exclude the use of the principle of equivalence in a more restricted .
sense, within the limits in which it is valid approximately. In particular the analogy
we have discussed between an accelerated frame of reference in the absence of a
gravitational field and an inertial frame in the presence of such a field may prove
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helpful, because the possibility of transforming the expression (61.01) into the form
(61.05) gives us an indication of the fact that the Newtonian potential must enter the
theory precisely as the coefficient of dt2. However, an approach based on this idea to
the formulation of a gravitational theory seems [to us] to be unsatisfactory because of
its inherent limitations (viz. the local nature of the principle of equivalence and the
assumption that the field is uniform). Another disadvantage of this approach is the -
necessity of using the ill-defined concept of a frame of reference in accelerated
motion. [Our] The approach of the present invention is free from these ,
disadvantages, being based on the direct application of the law of equality of inertial

and gravitational masses [.] with the solution of Einstein's field equations as a
boundary value problem where a discontinuity of matter is equated to a discéntinuity

- of the curvature of spacetimte. [It is well to remember that in] In the derivation of

Einstein's gravitational equations-in Appendices VI and VII, [we made] no use is
made of any frame of reference in accelerated motion and therefore also no use of the
principle of equivalence. As for this latter principle, to the extent that it is valid it
may be obtained subsequently as a consequence of the other assumptions. Thus it is
implied by the hypothesis that spacetime has Riemannian character, its mathematical
expression being the possibility of introducing a locally geodesic coordinate system
along a time-like world-line.

We stressed the approximate character of the principle of equivalence.
But from the point of view of Einstein's theory of gravitation the law of equality of -
inertial and gravitational mass also is of approximate character, since the very
concepts of inertial and gravitational mass are approximate. These concepts are
applicable to the extent to which Newton's laws of motion and law of gravitation are
valid and to the extent that it is possible to define any mass as a quantity
characterizing a particular body independently of its position and of the motion of
other bodies. In Einstein's theory of gravitation this is possible only approximately,
because there the law of motion of material bodies is of a more complicated nature.
Nevertheless, one can affirm that the law of equality of inertial and gravitational
mass agrees fully with Einstein's theory of gravitation, because this law follows from
the theory with as much precision as can in general be given to its formulation.

On the other hand Einstein's theory of gravitation does not reduce to a
formulation of the law of equality of the masses; it embraces essential new physical
principles. The first is already contained in the ordinary theory of relativity: the
unification of space and time into a single four-dimensional manifold with an
indefinite metric. This principle is related to the limiting nature of the velocity of
light and, closely connected with this, to the more precise specification of what is
meant by a sequence of events in time and also by cause and effect [(Section 12)]. The
second principle establishes the unity of metric and gravitation; it is the very essence
of Einstein's gravitational theory. '

It is just these two principles, and not any widening of the concept of
relativity, supposedly possible as a result of the local equivalence of acceleration and
gravitation, which form the basis of Einstein's theory of gravitation. But they

provide no atomic basis for curved spacetime or the equivalence of gravitational of

inertial masses.
APPENDIX III
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(The following text is published in Nature, Vol. 336, pp. 711-712 (1988), and is
incorporated herein by reference.

According to the present invention, departures from the text have been
made. Additions are underlined and deletions are [bracketed] and initialed.)

New work by Sidney Coleman [ ] extends Hawking's result by
assuming the existence and importance of quantum fluctuations which change the
topological structure of spacetime [(see figure)]. It should be stressed that we really
have no idea whether such fluctuations can occur, but if they do and if their effects
are relevant we can proceed to analyse what those effects might be. The first thing we
know is that the connecting wormbholes, filaments of distorted spacetime, would
have to be very tiny - about 10-33cm, the natural size for gravitational quantum-
mechanical fluctuations. Thus they would not be directly observable. Rather, as has
been shown, their effect would be transmitted indirectly through the values of the
constants of nature.

The way that wormholes affect our universe depends on the number of
'baby universes' they lead to. [(see figure).]. Rather than using the number of baby
universes of type i, Coleman uses a closely related variable o], Because the
wormbholes affect the values of the parameters in physical theories and because
wormbhole effects are governed by the variables of a1, all the constants of nature
become functions of the a1. This means that particle masses, the fine-structure
constant, the gravitational constant and, of course, the cosmological constant all
depend on parameters characterizing the topological structure of space, [ ]

Furthermore, if we can predict anything about the distribution of o]
values we may learn something about the values of physical parameters like the
cosmological constant. Because the ajs are part of our description of spatial

geometry, their probability distribution is determined by the wavefunction of the
Universe. Using the techniques of Hawking, Coleman finds that the probability

distribution for the a1 contains a factor which is infinitely peaked at values of these
parameters which make the cosmological constant vanish (for small positive

cosmological constants, it is proportional to the exponential of the exponential of one i

over the cosmological constant). Thus, the cosmological constant vanishes because it
is infinitely more likely that the constants of nature assume values which make it
vanish, than that they do not.

[ ] The Coleman-Hawking programme [ ] avoids a major
obstacle which has derailed most other attempts to adjust the cosmological constant
to zero,. [ .J Our universe is filled with matter and radiation which throughout

most of its history (presumably up to the present) have completely obscured any
effects of a small but non-vanishing cosmological constant. So how can any
mechanism determine the constant's value and adjust it to zero? The answer in
Coleman's approach is that the Universe peeks through a wormhole into a large
empty universe thus escaping the problem of the obscuring matter and radiation in
our Universe.

APPENDIX TV
(The following text is published in The Theory of Space, Time and Gravitation,
Chapter III, pp. 114-135 and is incorporated herein by reference.
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According to the present invention, departures from the text have been
made. Additions are underlined and deletions are [bracketed] and initialed.)
GENERAL TENSOR ANALYSIS
35. Permissible Transformations for Space and Time Coordinates
As the basis of our mathematical formulation of Relativity Theory we
chose the wave front equatlon

(Vo)2s—5 (&D) [(&D) (Bm) (8“)) ] =0 (3501 .

and the related expressmn for the square of the mterval
ds? = c2dt2 — (dx2 + dy2 + dz2) (35.02)

- ((Vw)?2 is to be understood as an abbreviation for the differential expression on the

left-hand side of the wave front equation.) If we introduce our usual variables -
Xg=ct; X]=X; X2=y; X3=2 (35.03)
and also the numbers

ep=1;, egj=ep=e3=-1 (35.04)
the expressions (V)2 and dsZ can be written as
S0 )2
(V)2 = Z ek ( ] (35.05)
k=0 %%k
and
3 ,
ds2= 3, ey (dxp)2 (35.06)
k=0

We know that both these expressions are invariant under Lorentz transformations.
If new coordinates

Xp=ct; x'1=x; x2=y; x3=2 (35.07)
are introduced which are connected with the previous ones by a Lorentz
transformation, we get

3 2
(V)2 = 2 ek[ : J (35.08)
k=0 (X%
and
3
ds2= ), ey (dx})? (35.09)
k=0

Variables such as (35.03) or (35.07) in which (V®)2 and ds? have the
forms (35.05) and (35.06) or (30.08) and (30.09) will be called Galilean coordinates, this
term now being understood to include the time.

We now assume that while x'g, x'1, x'2, and x'3 are given by (35.07) as
before, and so are Galilean coordinates, the quantities x0, x1, x2, and x3 are no longer
equal to (35.03) but instead are some auxiliary variables connected to x'g, x'1, x'2, and
x'3 by relations of the form

X'a = folxo, X1, X2, x3)  (@¢=0,1,2,3) (35.10)
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where the fo are arbitrary functions subject only to some general conditions. We

shall assume that the equations (35.10) can be solved for x0, x1, x2, and x3 so that their
Jacobian must be non-zero

D (x'g, x'1, x'9, X'3)
~ Dixg, x1,x2, x3)
Further we suppose that the functions fy have continuous derivatives of the first

three orders. There will be other conditions on the fo which arise from the physical
considerations; these will be examined later.

If this change of variables if made (V)2 becomes a homogeneous

quadratic form in the first derivatives with respect to the variables x0, x1, x2, and x3.
We write this form as

20 (35.11)

30 80
(Vo)2 = 2 gup == < o (35.12)
ap=0 Yo OXB
where
of 53; Sxq Oxp (35.13
8 K axy Kk Ox 1)
Similarly, if the change of vanables is made in ds? the result is
3
ds?= X gOBdxqdxp (35.14)
af=0
with
3 (axy x
k OXk
gup= 2 ek (— -—} (35.15)
S ™
It is readily deduced from (35.13) and (35.15) that
3 v 1 ifv=yp
2 guog’®=3 = { ((35.16)
a=0 B0 ifvayp
Hence if g is defined as the determinant
g =Detgyp (35.17)

the quantities g™B will be the first minors of this determinant divided by g itself.
Using the rule of determinant multiplication we get

Ox'k ox'y
Det | e — 5%, * Det % =Det gqp (35.18)
Here the second factor is equal to the Jacobian D of (35.11) and since
epeienes (35.19)

the first factor is -D. Consequently

(35.20)
It is useful to restrict the choice of variables x0, x1, x2, and x3 by

conditions which ensure that x0, like x'0, is of the nature of a time whereas x1, X2, and
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x3 are of the nature of spatial coordinates. These conditions must be formulated
precisely. As before, we mean by the term "event" a spatial point considered at a
particular moment in time; it may be called a "point-instant.” We demand that two

events having the same values of the spatial coordinate parameters x1, x2, and x3 but
different values x( *and xg** for their time parameters shall be [in time sequence in
the sense of Section 12] time-like. We know that for time-like events [in time ’
sequence] the squared interval is positive. This must be true in particular for an
infinitesimal interval, so if we take the difference xg* - xg** to be infinitesimal and

put

X‘0=xg; X 0=xg+dxg (35.21)
. we must have
ds2 = ggodx2g (35.22)
whence .
g00>0 (35.23)

Assume further that we have two events with the same time paraméter x0 but
different values of the spatial parameters, namely (x1, x2, and x3) and (x1 + dx1, X2 +

dx2, 3 + dx3). We require that two such events shall be quasi-simultaneous where where
guasi-simultaneous events are described as follows:
Let us assume now that the light from one flash does not reach the place
of [the other] another flash before the latter occurs.
Then inequalities opposite [to (12.01) and (12.02)] that follow will hold:

1 1
sl l<n-t<sin-nl (12.05)

where r1, 2 and t1, t2 are the position and time of 1 and 2, respectively. Pairs of
events for which the inequality (12.05) is true will be called quasi-simultaneous. This
name is justified by the fact that in this case the notions "earlier” and "later" become
relative ones: one may find t2 - t] > 0 in one reference frame and t2 - t] < 0 in
another. The question as to which flash happened first has now no unique answer.
Quasi-simultaneous events can be characterized by the invariant

inequality
Atz -t1)2- r2-11)% < 0 (12.06)
which follows from (12.05). The two relations, (12.05) and (12.06), are equivalent and,
therefore, (12.05) is also invariant. We shall call the real positive quantity
R=v[@2-11)?- Atz - t1)%) (12.07)
the space-like interval between two quasi-simultaneous events. For quasi-
simultaneous events ds? is negative, therefore we must have

ds2= 2, gik dxdxy <0 (35.24)
ik=1 ,
whatever the values of dxj, dx), and dx3, provided not all three are zero. It follows

that the quadratic form (35.24) must be negative-definite. It is a well-known algebraic
fact that the necessary and sufficient conditions for this are the inequalities
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g11 812 813
821 822 g23| <0 (35.25)
831 832 833
811 822 50 822 823 50; 811 813| (35.26)
821 822 832 833 g31 833
811<0; §22<0; g33<0 (35.27)

which, incidentally, are not all independent. An independent set of conditions is, for
instance (35.25), the first inequality of (35.26) and the first of (35.27).
It is not difficult to show that if all these conditions are imposed on the

coefficients gop then, regardless of whether they are given by (35.15) or not, it is

possible to represent ds2 in the neighbourhood of any point as the sum of four
squared terms, one with a positive and the remaining three with negative signs. The
set of signs of the terms is called the signature of the quadratic form. In our case the

signature can be written as (ep, e}, 3, and e3) or as (+- - -).
It follows from the inequalities (35.25) to (35.27) that the determinant g is

always negative and also that similar inequalities involving the g®B with upper
indices hold, consequently we have

go0>0 (35.28)
and
3
> gik oy <0 (35.29)
ik=1

where ©1, w2, and @3 are any three numbers, not all zero. We shall not give the
proofs of these purely algebraic statements.

Thus, in order that the parameter x0 should have the character of time
and the other three, x1, x2, and x3, the character of spatial coordinates, it is necessary

and sufficient that g00 should be positive and that the quadratic form with the '
coefficients gik (i, k =1, 2, 3) should be negative-definite. There is no need to impose °
any restriction on the quantities g10, g20, and g30.

Let us now consider the geometrical meaning of the equations x0 =
const. and xk = const. We shall derive a condition under which the condition

o(x,y,2,t)=0 (35.30)
can be interpreted as the equation of a surface in motion. It follows from this
equation that the differentials of space and time coordinates, are related by

Oxdx + wydy + 0,dz + wydt =0 (35.31)
where x, 0y, @z, and et denote the derivatives of © with respectto x, y, zand t. We
take a displacement (dx, dy, dz) in the direction of the normal to the surface and put

Wx Qy Wz
=T 7dn; dy=7——Fdn; dz=4T——dn; 3532
lgrad o] y lgrad | lgradmIdn' ( )
so that |dn] is the absolute value of the displacement. Inserting in (35.31) we get
lgrad ol dn + wdt=0 (35.33)
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and therefore the square of the displacement velocity

2
dn
2=
v ( dt) (35.34)
will be given by
2
o
y2e 2 (35.35)
| grad |

Thus (35.30) can be interpreted as the equation of a surface, each point of which .
moves normally with a speed given by (35.35). However, such an interpretation is
only possible as long as this speed does not exceed that of light. According to (35.35)
and (35.01) this means that we must have

(V)2 <0 < (35.36)

The equality sign is valid for motions with the speed of hght
On the other hand, is

(V)2 >0 (35.37)
equation (35.30) can be solved for the time and written in the form
1 A
t=2fx v, z) - (35.38)
with |
(grad f)2<1 ' (35.39)

Equation (35.38) assigns to every point in space a definite instant of time in such a
way that all the four-dimensional "point -instants" are quasi-simultaneous. Such an
equation may be called a "time-equation.” [We recall that] also time equations
occurfred] [in Section 3] in connection with the question of the characteristics of
Maxwell's equations.

[As we remarked in Section 3, an] An equation @ = 0 can be considered as
the equation of a hyperspace in the four-dimensional spacetune manifold. Such
hyperspaces can then be divided into two classes.

If (Vo)2 < 0 we can say that one of the dimensions of the hyperspaceis . - '

o

time-like (the inaccurate phrase "the surface is time-like" is sometimes used). By
(35.35) this describes an ordinary two-dimensional surface” moving with a velocxty
less than that of light.

If (V)2 > 0, on the other hand, we say that the hypersurface is space-like.
It then represents the whole of infinite space, the various points of which are all
taken at different instances of time, the time t at which the point ( x, y, 2) is taken, -
being determined by the time equation, i.e. the equation of the hypersurface; the
instants of time assigned to any two points in space must be so close that the
corresponding four-dimensional interval is always space-like.

We use the fact that (V)2 is an invariant and in turn put ® = X0, ® =X],

® =x2,and o =x3, This gives

* In the four-dimensional manifold a hypersurface has three dimensions but in the present case only ‘
two of these are spatial.
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(Vxo)2=g%0> 0 (35.40)
and

(Vx12=gll<0; (Vx9)2=g22<0; (Vx3)2=g33<0 (35.41)

Hence the equation x( = const. is a time equation and the three equations xk = const.
(k =1, 2, 3) represent surfaces moving in the direction of their normals with less than v
light velocity. These latter are thus equations of moving spatial coordinate surfaces. = -

It follows also from our conditions on the transformations of space and
time coordinates that constant values of x1, x2, and x3 correspond, in any inertial
frame of reference, to motion of a point with less than light velocity.

In classical Newtonian mechanics one often uses a time dependent .
coordinate transformation which is interpreted as passing to a moving frame of oy
reference. In comparing coordinate transformations in Newtonian mechanics with '
the transformations of time and space coordinates in the Theory of Relativity itis
essential to realize the following. Firstly, in the general case of accelerated motion the
very notion of an accelerated frame of reference in Newtonian mechanics is not the -
same as in Relativity. The Newtonian concept involves the idea of an absolutely
rigid body and the instantaneous propagation of light. In Relativity, on the other g
hand, the notion of a rigid body is used, if at all, not in an absolute sense but only for
non-accelerated motions and in the absence of external forces, and is of an auxiliary
nature; the concept of a frame of reference is not based on it but on the law of
wavefront propagation. The prototype of a Newtonian frame of reference is a rigid
scaffolding, the prototype of a Relativistic one is the radar station. Secondly, the class -
of transformations permissible in Newtonian mechanics is much wider than in the
Theory of Relativity; Newtonian mechanics does not have to consider the
limitations, discussed above, which rise from the existence of a limiting speed.

As an example we consider a transformation which can be interpreted in
Newtonian mechanics as going over to a uniformly accelerated frame. Letx,y',z'

and t' be the space and time coordinates in an inertial frame, i.e. Galilean coordinates.
We put ' :

-

. _
x' =x—§at2; y=y, z'=z (35.42)
and also
a
t=t-5tx (35.43)
c

The variables x, y, z and t can be interpreted as space and time coordinates in a certain
accelerated frame (in the Newtonian sense and in the corresponding approximation). -
Inserting (35.42) and (35.43) into the expression for ds2 we get

2
ds2 = (- 2ax - a212) df2 dx2 - dy2 - dz2 +a§(x dt +tdx)2 (35.44)
The required inequalities for the coefficients will hold if the conditions '

22 2 2.2
a<t ax a<t
1- 5550 (1-C2) 2550 (35.45)

are satisfied. In addition we can require that
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ot'
5t =1 02 >0 (35.46)
These inequalities show that the substitutions (35.42), (35.43) are permissible only in a
part of space and only for a limited length of time. ,
Another example is the transformation corresponding to the

introduction of a uniformly rotating frame.” We put
X'=xcosot+ysinot; z'=z (35.47)
y'=-xsinwt+ycoswt; t'=t
and obtain
ds2 = [c2 - @2(x2+ y2)] dt2 - 2 @ (ydx - xdy) dt -dx2 - dy? - dz2 (35.48)
The conditions on the coefficients require
2~ 02(x2+y2) > 0 (35.49)
which is satisfied only for distances from the axis of rotation less than that where the
linear velocity of the rotation equals the speed of light.
We stress once again that the examples given here have phys1cal sense
only in a region in which Newtonian mechanics is applicable [(see also Section 61).]
It is obvious that the introduction of ordinary curvilinear spatial
coordinates is always an allowed transformation. As long as the transformations do
not involve time they have the same geometrical meaning as in non-relativistic -
theory. Therefore we refrain from discussing them.
36. General Tensor Analysis and Generalized Geometry
In the previous section we considered the expressions

3
(Vo)2= D, goB (-ES—O’-E—CD—] (36.01)
B=0 Oxq SXB
and '
d2= 2, gapdxodxp (36.02)
op=0 '

which were obtained from the usual expressions of Relativity Theory by introducing
variables x1, x2, x3, and x0 in place of the space and time coordinates x, y,zand t. We
established the conditions subject to which the variable x( can characterize a sequence

of events in time and the variables x1, x2, and x3 their location in space.
By itself, the introduction of new variables can naturally not influence
the physical consequences of the theory; it is merely a mathematical device.

However, the development of a formalism which permits the statement of eqﬁatxons

of mathematical physics (such as equations of motion and field equations) directly in
terms of arbitrary variables without the use of Cartesian spatial coordinates and time,
is not only useful as a device for convenient computation but is also important in
principle. The existence of such a formalism can show the way to generalize physxcal
theories.
We shall call equations generally covariant, if they are valid for any .

arbitrary choice of independent variables. The formalism that allows anyone to write
down generally covariant tensor equations will be called "general tensor analysis."
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Generally covariant equations are already used in Newtonian
mechanics. We refer to Lagrange's equations (of the second kind) which describe the
motion of a system of mass points in generalized coordinates and also their
generalization for continuous media. While they state nothing physically new as
compared to equations in Cartesian coordinates, Lagrange's equations nevertheless
play an important part both in practical applications and in theoretical investigations.
In the Theory of Relativity general tensor analysis has a similar purpose.

In general tensor analysis the starting point is the pair of equations
(36.01) and (36.02) giving the square of the four-dimensional gradient and the square
of the interval. One says that these expressions characterize the metric of spacetime.

The coefficients gXB and gap entering the equations are thought of as functions of the
variables x0, x1, x2, and x3,

We have so far assumed that the expressions (36.01) and (36.02) are
derived from (35.01) and (35.02), or from (35.08) and (35.09), by introduction of new

variables, so that the coefficients gXB and gap can be represented in the terms of the
four functions f0, f1, f2, and 3 as follows:

3 5
gaf = Z ek [_f_kM} (36.03)

By virtue of (35.16) the ng can be expressed in terms of the same four functions.
However, it is important to note that the equations of general tensor

analysis are hardly any more complicated if it is not assumed that the g can be

represented in the form (36.03) but that instead they are taken simply as given

functions of the coordinates, i.e. of the variables, x0, x1, X2, and x3. This more general
point of view corresponds to the introduction of non-Euclidean geometry and a non-
Euclidean metric in spacetime. Such a step takes one beyond the limits of ordinary
(so-called "Special”) Relativity and is connected with the formulation of a new

physical theory, namely Einstein's Theory of Gravitation [which is described in
Appendix VI]. [Later chapters of this book are devoted to this theory, but in this
chapter,] presently we adopt a purely formal view and develop general tensor analysis
on the assumption that the metric is given and the gxp are known functions of the
coordinates. Such a presentation has two advantages. In the first place we can find

the conditions which the gop must satisfy in order to be expressible in the form

(36.03); this gives us a generally covariant formulation of the usual Theory of

Relativity. In the second place we obtain in this way the mathematical apparatus for
formulating Einstein's Theory of Gravitation.

Before going on to a systematic exposition of general tensor analysis we
establish the connection between the expressions (Vw)2 and ds?2 which exists if

3
2 guogV®= 8:: (36.04)
a=0
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regardless of whether the ggp are of the form (36.03) or not. We show thatif a
function ©(x0, X1, X2, x3) satisfies (Vw)2 = 0 then the differentials of the coordinates
related by the condition ® = const. satisfy ds? = 0.

Putting
do ,
Wo, = &_x; (@=0,123) (36.05)
We write (V)2 = 0 in the form
G= Z gaBmamB =0 ‘ (36.06)
of=0

This partial differential equation for  is of the same type as the Hamilton-Jacobi |

equation of classical mechanics and can be solved similarly to the latter. If we solve it
for oQ and write
wg=-H(w],w0y,n3) (36.07)
the function H will correspond to the Hamiltonian and Hamilton's equations will be
dxk S6H dwk 6&H '

= ; =-— (k=1,2,3 .08

But

oH dmo G/ dwk
— = (36.09)
dwk dmk G /dwp

and the first three equations of (36.05) show that the differentials dxg(a=0,1,2,3) are

proportional to the partial derivatives of G with respect to the wg. Denoting the
infinitesimal coefficient of proportionality by *dp, we have

3
_dpdG _
dxg = ama—dpgo g®Pdwg (36.10)

Solving for wg with the use of (36.04) we get

wodp = Bz gopdxp (36.11)
=0
and the obvious relation
z (Daan:O (36.12)
a=0
then gives
3
ds?= 2. gapdxadxp=0 (36.13)
of=0

as required. Thus if we continue to consider the equation (Vo)2 =0 as describing a
wavefront we can take it that for points on the wavefront the dxfferenuals of space

and time coordinates are related by ds? = 0.
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In the following we shall consider the gxp as given functions of the
variables x0, x1, X2, and x3 and shall merely assume that they have continuous
derivatives of all orders considered and that they satisfy the inequalities stated in
Section 35. In addition to the gopB we shall consider the g@B, their connection being
(36.04). The conditions under which the gug can be represented in the form (36.03)

[will be] is established in Section 42 of the following reference which is herein
incorporated by reference in its entirety: The Theory of Space, Time and Gravitation,

V. Fock, the MacMillan Company, New York, 1964, In particular, Section 20 of this

reference gives the definition of a four-dimensional vector: Section 21 describes four-

dimensional tensors; Section 22 describes pseudo-tensors: Section 37 describes the

definition of a vector and of a tensor in terms of tensor algebra: Section 42 describes
the transformation law for Christoffel symbol, and the locally geodesic coordinate

system, conditions for transforming ds2 to a form with constant coefficients: Section
43 describes the curvature tensor; Section 44 describes the properties of the curvature = -
tensor, and Section 31 describes the mass tensor. Also Section 39 describes the parallel

transport of a vector; and Section 40 describes covariant differentiation.
38. The Equation of a Geodesic

We consider two point-instants corresponding to two events in time
sequence and we denote their coordinates by x(1) and x(2) respectively. Leta ‘
material point move along some curve in such a way that when xg = xo(1) its spatial -
coordinates are xk = xk(1) and when x( = x((2) they are x| = xk(2). '

As the events xg (1) and x(2) are assumed to be in time sequence such

motion is possible with a speed less than that of light. The time x and the spatial

coordinates xk corresponding to it can be expressed parametrically in terms of an
auxiliary variable p, by putting

Xq = 0% (p) (38.01)
with '
x = otony x 2 = gtipy 3802
Since the speed of the motion is less than that of light the inequality
ds? =go 9% B dp2>0 (38.03)

must hold for any infinitesimal interval along the path. Here a dot denotes
differentiation with respect to p. The finite interval between the events in time

sequence which is proportional to the interval of proper time 1, will be denoted by s = _
ct and we have ’
P2
s=ct= [ =V(gep 9% ¢B)-dp (38.09)

P1
We now consider two quasi-simultaneous events. The two points in
space at which the events take place can be joined by some curve and to each joint on
this curve we can assign a definite instant of time, i.e. we can write down the "time

LS

~ *
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equation” for each point, taking care that any two intermediate space-instants are
quasi-simultaneous. The analytic expressions for the curve and the time equation
may again be stated in the form of equations (38.01) and (38.02), but we can no longer
interpret these equations as describing the motion of a point along a curve; they now
give a static description of the curve as a whole. For any pair of intermediate points,
infinitesimally separated, we have

ds2 = gap O B dp2 <0 (38.05)
and the space-like interval
p2
I= [ =V (-gap ¢ ¢P)-dp (38.06)

P1

characterizes the length of the curve.

The question arises of the extremal values of both the time-like interval
(38.04) between two events in time sequence and the space-like interval (38.06)
between two quasi-simultaneous events. Both these variational problems lead to
equations of the same form, whether the interval is time-like or space-like. The
variational equations are called the equations of the geodesic by analogy with the
theory of surfaces. However, it is important to note that whereas in the theory of
surfaces, where the square of an infinitesimal distance is a positive definite quadratic
form of the coordinate differentials, the geodesic is, generally speaking* a shortest
line; in the four-dimensional spacetlme manifold the situation is different; the -
extremal value of the interval is a maximum for a time-like interval and nmther a
maximum nor a minimum for a space-like interval. This can easily be verified in
the special case of the Galilean metric where ds? has the form (37.04). For events in
time sequence we can then choose a reference frame so that the spatial coordinates of
the initial and final points are the same and we can choose the time t as the
parameter. We then have

#(2)
s = j V(c2-v2) - dt (38.07)
1)
where ,
2 2 2
dx
v2=(g) + %{ + %zt-) (38.08)

The solution of the variational problem in this case is given by constant
values of x, y and z, so that v2 = 0. For any other trajectory v2 will somewhere be

greater than zero, so that c2- v2 , ¢ and therefore

S < Sax = c(t(2) - t(1)) ~ (38.09)
For the space-like interval we can choose a frame of reference such that
t(2) = t(l) y(z) y(l); 2(2) z(l) (38 10)

while x(2) > x(1). Taking the coordinate x as the parameter we obtain

" i.e. for sufficiently near terminal points.
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X 2 2 2
d
1= [ Ja +(%XX) + (%) ¥ (&t) )-dx  (3811)
x(1)
The solution of the variational problem is now given by constant values
of y, z and t for which then

loxtr = X2 - x(1)

(38.12)

However, the other curves y(x), z(x) or other time equations t(x) we may find either
> lextr or 1 < lextr depending on whether the square root in (38.11) is in the mean

greater or less than unity.

We now derive the differential equations of the geodesic. The

Lagrangian of the variational problem is
L=7¢ op 9% ¢8)
or, writing X, instead of ¢*

L= \/(gaB Xa XB)

The extremal condition for the integral

p2
s = J. Ldp
P1
leads to the Euler-Lagrange equations
48 L
We now put
1 ..
F=380B %o B
so that L=V (2F)

(38.13)

(38.14)

(38.15)

(38.16)

(38.17)
(38.18)

[By the same reasoning as in Section 17 we] we can choose a parameter p so that

dF
d—=0; F = const

and with this choice (38.16) is equivalent to

These last equations possess the integral

. OF
Xg ——-F=F = const

Oxg

(38.19)

(3820)

(38.21)

so that the condition (38.19) is a consequence of (38.21). Inserting the explicit

expression for F we obtain from (38.20)

d . 1d8gpy. .
dp @ap*p) =2, XBxy=0

(38.22)

H
e

TR

-
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37
or, performing the differentiations,
. Ogg 1
Sap XB + _‘EXB Xy = ZE;EY xg xy=0 (38.23)

The coefficient of > xﬁx-y can be symmetnzed w1th respect to B and y; if we
put

8 ) 3
[Py ol = 5| oo , 260y 8By (38.24)
. Ox 'Y SXB SXa
the differential equation of the geodesic becomes
gop Xp+ By, ol xpxy =0 (38.25)

The expression (38.24) is called a Christoffel symbol of the first kind. In
order to solve equations (38.25) for the second derivatives we multiply them by gov
and sum over a. Then with the new symbol

By, vl = g® [Br.al (38.26)
we obtain _
Xy +{By, vl xg xy =0 (38.27)

The expression (38.26) is called a Christoffel symbol of the second kind and is often
represented by an alternative symbol

{By, vl = l“v | (38.28)

By

For uniformity we can also introduce a corresponding form of notation for
Christoffel symbols of the first kind:
[eB, Y1 =T yap (38.29)
but this is less common practice.
We have thus

Sgvar 58v[3 5guf
38.
I‘votB--z(axB Sxg | Bxy (38.30)
and
I osgW %uc %8B %8ap (38.31)
B‘Y BXB BXa 5)(”

In this notation the equation of a geodesic takes on the form

dsz V an i‘.i(ﬁ

dp2 a[i dp dp ~
If the Christoffel symbols correspond to a metric tensor that can be written in the
form (35.15) equations (38.32) are equivalent to the relations

0 k=012

dp2 - ( - 01 7% 3) (38.33)
for the Galilean coordinates x'k. This follows from the covariance of the equations
and the fact that in Galilean coordinates the Christoffel symbols vanish. In this case,

(38.32)
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therefore, the equation of a geodesic leads to linear dependence of the Galilean
coordinates on the parameter p.

It is not difficult to verify that the development leading to (38.32)
remains valid whatever the sign of F. If F > 0 the "geodesic" joins two events in time
sequence and equations (38.32) can be interpreted as the equation of motion of a free
mass point moving with a speed less than that of light. The increment dp of p is
proportional to the increment dr of the proper time 1 and (38.32) may be replaced by

d2x v dxq dx

. 2B,

de2 By dt dt
The length of the geodesic gives the interval of proper time between the "departure”
and the "arrival" of the mass point. If on the other hand F < 0, the geodesic joins two
quasi-simultaneous events and we can put dp equal to the increment of the spatial
interval. Equations (38.32) then appear as

d2xy v dxg dxp

2 T o T @ =0 (38.35)

(38.34)

i

The case F = 0 corresponds to a point moving along a ray with the speed

of light. In this case the Lagrangian (38.18) is zero and the above derivation of the
geodesic equation is no longer valid. However, the equations (38.32) themselves
retain their meaning and as they possess the integral (38.21) they are compatible with
the condition F = 0. To justify the equations in this case we can start from the
Hamiltonian equations that were discussed in Section 36. According to (36.08) we
have

dxx &H Odwx &H

T0 5oy %0 = 'ﬁ (k=12,3) (38.36)

where the Hamiltonian H = -®( is obtained by solving for @0 the equation

G=gPuywp=0 (38.37)
Therefore we have '
1 3G 3G
=-dog= — - i
dH=-deg=5— o Sxg + o Bcok] (38.38)
Using the fact that
dog dH B8H
dxg = dxg " -SXQ (38.39)

and expressing the derivatives of H in terms of the derivatives of G we can write
equations (38.36) in a symmetric fashion:

dxq 168G doy 138G
dp “28mg P | 28xg (@=0,1,2,3)  (38.40)

Here dp is considered to be the differential of the independent variable p. The first
four equations of (38.40) have already been given in Section 36. Writing the right-
hand sides explicitly we get
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dxa of ma 15gHV
dp T&TUB: Tdp T2 8%g, S Qulv o (38410)
It is readily seen that these equations are equxvalent to (38.32), for we have
dx)
O = Buhgp (38.42)

and therefore
dghv dgHv XA itV gu}» X\

ax O)u SX gu.l dp dxa dp (3843)
since
Sgﬂ\’ ”2
Bk Y S T (gllv g =35 — (5Vx )=0 (38.44)
Inserting (38.43) into (38.41) we get

‘a‘p— =5 gHV wy, 8x P (38.45)

or, in consequence of the first set of equations in (38.41),
dag  18gu3 dxy dxy,
dp T2 §x, dp dp
Eliminating the wg from these equations and (38.42) we finally obtain

d dxg ) 1 0gux dxy dxp
These equations are the same as the equations (38.22) from which the equations of the
geodesic in the form (38.32) were derived. The passage from (38.41) to (38.47) is the
usual one from Hamilton's to Lagrange's equations.

We have thus proved that the geodesic of zero length is likewise ,
determined by the equations (38.22) but with the condition F = 0 adjoined.

It should be noted that because F is constant, a geodesic retains its
character for its entire length; it may always describe the motion of a point with a
speed less than that of light or it may be a null-line or, ﬁnally, it may be everywhere
space-like.

(38.46)

® ;
For a null-geodesic the relation (38.37) with wg = g_ﬁ may be considered
Xou

to be the Hamilton-Jacobi equation for the action function w. (See Section 36.) The
Hamilton-Jacobi equation for the general case can also be readily obtained. For '
definiteness we consxder the case of a point moving with a speed less than that of
light.

Choosing the time t = x( as the parameter and denoting differentiation
with respect to it by a dot we can write the Lagrangian of the problem” in the form -

* It is convenient to introduce the Lagrangian with opposite sign to the equal conventionin
mechanics. As a result, the sign of the energy will be opposite to the sign of the Hamiltonian.
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L = +(goo + 280i%; *+ gikXi Xk) (38.48)
The generalized momenta are
3L 1 .
—=Pi=+T (80i + 8ik Xk) (38.49)
X{
and the Hamiltonian is found by the usual rule to be the expression
. 1 .
Hxipj - L=-1 Qoo + 8ok Xk (38.50)
with the velocities xk expressed in terms of the momenta pt by (38.49).
If we put
1 .
Po =1 (800 + 80k XK (38.51)
and observe that
Ldt=ds (38.52)
where s is the length of arc, the four quantities ptpg can be uniformly written as
dx
Pa = 8af Fsﬁ (38.53)
The identity
dxq dx
gaf Eﬁsﬁ =1 (38.54)
leads to the relation
g'Vpupy =1 (38.55)

which can be regarded as the result of eliminating the three velocities X1, X2, and x3
from the four equations (38.49) and (38.51). The Hamiltonian H = -p is obtained by

solving (38.55) for po. The Hamilton-Jacobi equation is obtained by the usual rule of

expressing p1, p2, p3 and H as partial derivatives of S with respect to the spatial
coordinates and to time, as follows:

3S 35S
H=-— =T 38.56
s’ Pk dxy ( )
These equations can also be written as
S
== (38.57)
SXV
Thus the Hamilton-Jacobi form of the equation of a geodesic is
dS &S
(38.58)

Buv = 5xp8xv_1 _
If a complete integral of the Hamilton-Jacobi equation
S =5(xg, x1,%2, X3, €1, ©2, €3) + € (38.59)
is known, which contains three arbitrary constants cj, ¢2, and ¢3, not counting the
additive constant c(), the derivatives of S with respect to the constants,

wo
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5

Bek
are also constants, as is proved in mechanics. They are determined from the
conditions of the problem.

A comparison of (38.58) with (38.37) shows that the equations of a null-
geodesic are obtained from (38.58) by replacing the right-hand side by zero. Fora
space-like geodesic the right-hand side of the Hamilton-Jacobi equation is a negative
constant which can be set equal to -1. .

APPENDIX V.
(The following text is published in The Theory of Space, Time and Gravitation,

=bgk k=1,223) (38.60)

Chapter IV, pp. 178-182 and is incorporated herein by reference.

According to the present invention, departures from the text have been

made. Additions are underlined and deletions are [bracketed] and initialed.)
[ .] Remark on the Relativity Principle and the Covariance of equations

[At the beginning of the book (Section 6) we gave] In AppendixIa
formulation of the principle of relativity, was given which together with the -
postulate that the velocity of light has a hmmng character, may be made the basis of
relativity theory. We shall now investigate in more detail the question of the
connection of the physical principle of relativity with the requn'ement that the

equations be covariant. [We have already touched on this problem in the

Introduction.] :
In the first place, we shall attempt to give a generally covanant
formulation of the principle of relativity, without as yet making this concept more
precise. In its most general form the principle of relativity states the equivalence of
the coordinate systems (or frames of reference) that belong to a certain class and are
related by transformations of the form

x'a = fa ( XO, X'l, x3 ) (49*.01)
which may be stated more briefly as
x' = f(x) : (49%.02)

It is essential to remember that, in addition to the group of permi’ssiblé
transformations, the class of coordinate systems must be characterized by certam '
supplementary conditions. Thus, for instance, if we consider Lorentz
transformations, it is self-evident that these linear transformations must connect not
any arbitrary coordinates, but only the Galilean coordinates in two inertial reference
frames. To consider linear transformations between any other (non-Galilean)
coordinates has no sense, because the Galilean principle of relativity has no validity
in relation to such artificial linear transformations. On the other hand, if one
introduces any other variables in place of the Galilean coordinates, a Lorentz
transformation can evidently be expressed in terms of these variables, but then the
transformation formulae will have a more comphcated form.

Let us now state more precisely what is meant in the formulation of the
principle of relativity by equivalence of reference frames. Two reference frames (x)
and (x) may be called physically equivalent if phenomena proceed in the same way"
in them. This means that if a possible process is described in the coordinates (x) by
the functions
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01 (x), P2(X),eec., P (X) (49*.03)
then there is another possible process which is describable by the same functions
91 X)), P2(x),ee.e., P (X)) (49*.04)

in the coordinates (x'). Conversely any process of the form (49.04) in the second o
system corresponds to a possible process of the form (49*.03) in the first system. [Such
a definition of corresponding processes agrees fully with that given in Section 6.] '
Thus a relativity principle is a statement concerning the existence of corresponding
processes in a set of reference frames of a certain class; the systems of this class are
then accepted as equivalent. It is clear from this definition that both the principle of
relativity itself and the equivalence of two reference frames are physical concepts, and -
the statement that the one or the other is valid involves a definite physical
hypothesis and is not just conventional. In addition, it follows that the very notion
of a "principle of relativity" becomes well-defined only when a definite class of L
frames of reference has been singled out. In the usual theory of relativity this class is
that of inertial systems. 3
The functions (49*.03) or (49*.04) describing a physical process will be
called field functions or functions of state. [We have already indicated in Section 46
that in] In a generally covariant formulation of the equations describing physical

processes, the components gy of the metric tensor must be included among the

functions of state. [In the example there discussed we] We_ then get the following
collection of field functions:

Fuv(); jv(x), guy(x) (49*.05)

li.e.] which are the electromagnetic field, the current vector and the metric tensor.
The requirement entering the formulation of a principle of relativity that in the two
equivalent reference frames corresponding phenomena should proceed in the same
way applies equally to the metric tensor. Thus if we compare two corresponding
phenomena in two physically equivalent reference frames, then for the first
phenomenon, described in the old coordinates, not only the components of electro-
magnetic field and of current density, but also the components of the metric tensor
must have the same mathematical form as for the second phenomenon described in
the new coordinates. L

What can be condluded further will depend on whether we assume that

the metric is fixed or whether we take into consideration phenomena which
themselves influence the metric. In the [usual] special theory of relativity [described
in the previous chapters] it is assumed that the metric is given once and for all and
does not depend on any physical processes. The generally covariant formulation of ..
the theory of relativity given [ in the present chapter] presently does not change ‘
anything in this. As long as the assumption remains in force that the character of
spacetime is Galilean and the gyy are introduced only to achieve general covariance,
these quantities will depend only on the choice of coordinate system, not on the
nature of the physical process discussed; they are functions of state only in a formal
sense. In the theory of gravitation on the other hand, to the description of which we
turn in the following [chapter] Appendices VI and VII, a different assumption is
made concerning the nature of spacetime. There the gy are the functions of state, .
not only in the formal sense, but in faqt: they describe a certain physical field, namely ,
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the field of gravitation. However, when discussing small-scale processes which do
not influence the motion of heavy masses one can also assume that the metric is
fixed (though not Galilean).

To give a definite meaning to the principle of relativity in such
circumstances, it is essential to specify more closely not only the class of coordinate
systems, but also the nature of the physical processes from which the principle is
being formulated.

We shall first start from the assumption that the metric is fixed ("rigid"),
or else that it may be considered as fixed for a certain class of physical processes. We
return to the above definition of corresponding phenomena in two physically
equivalent coordinate systems, according to which all field functions, including the

- components of the metric tensor, must have the same mathematical form for the

first process described in the old coordinates os for the second process described in the

new coordinates. If the gy are independent of the nature of the physical
phenomenon, then in relation to these quantities we need not make a distinction
between the first and the second process, and need consider only transformations of
the coordinates. But the quantities

guv(x) and g'y(x) (49*.06)
will be connected by the tensor transformation rule; the requirement of the relativity
principle that they should have one and the same mathematical form reduces (for

infinitesimal coordinate transformations) to the equations dguy = 0. [discussed in
Sections 48 and 49.]

We know that the most general class of transformations that satisfies
these equations contains 10 parameters and is possible only in uniform spacetime,
where the relation

Ruv,ap =K" vogup - guogvp) (49*.07)
[(see equation 49.12)] is valid. If in these relations K is zero, the spacetime is Galilean
and the transformations in question are Lorentz transformations, except that possibly
they may be written down in other (non-Galilean) coordinates.

Thus with the rigidity assumption for the metric, the principle of
relativity implies the uniformity of spacetime, and if the additional condition K =0
holds, we obtain a Galilean metric in appropriate coordinates. The relativity
principle in general form then reduces to the Galilean relativity principle. As for the
condition K = 0, it results in an additional uniformity of spacetime; if the scale of the
Galilean coordinates is changed, than the scale of the elementary interval changes in
the same proportion. [ ] This property implies in turn that there is no absolute scale
for spacetime, unlike the absolute scale that exists for velocities in terms of the
velocity of light; the absence of an absolute scale for spacetime leads conversely to the
equation K = 0.

If we now go over to discuss phenomena which may themselves
influence the metric, we must reckon with the possibility that under certain
conditions the principle of relativity will be valid in non-uniform space also. For this
to be so, it is necessary that the motion of the masses producing the non-uniformity
be included in the description of the phenomena. ‘ '
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Indeed, [at the end of this book it will] it can be shown that under the
assumption that spacetime is uniform at infinity (where it must be Galilean) one can
single out a dlass of coordinate systems that are analogous to inertial systems and
defined up to a Lorentz transformation. In relation to this class of coordinate systems
a principle of relativity will hold in the same form as in the usual theory of relativity,
in spite of the fact that at a finite distance from the masses the space if non-uniform.
Here however one must bear in mind the essential role played by the boundary
conditions that require uniformity at infinity. Thus in the last analysis the relativity
principle is here also a result of uniformity.

Since the greatest possible uniformity is expressed by Lorentz
transformations there cannot be a more general principle of relativity than that
discussed in ordinary relativity theory. All the more, there cannot be a general
principle of relativity, as a physical principle, which would hold with respect to
arbitrary frames of reference.

In order to make this fact clear, it is essential to distinguish sharply
between a physical principle that postulates the existence of corresponding
phenomena in different frames of reference and the simple requirement that
equations should be covariant in the passage from one frame of reference to another.
It is clear that a principle of relativity implies a covariance of differential equations,
but the converse is not true: covariance of differential equations is possible also

when no principle of relativity is satisfied. Quite apart from the fact that not all laws |

of nature reduce to differential equations, even fields described by differential
equations require for their definitions not only these equations, but also all kinds of
initial, boundary and other conditions. These conditions are not covariant.
Therefore the preservation of their physical content requires a change in their
mathematical form and, conversely, preservation of their mathematical form implies
a change of their physical content. But the realizability of a process with a new
physical content is an independent question which cannot be solved a priori. If

within a given class of reference "corresponding" physical processes are possible, then |

a principle of relativity holds. In the opposite case it does not. It is clear, however,

that such a model representation of physical processes, and in particular such a model

representation of the metric, is possible at most for a narrow class of reference
systems, and certainly cannot be unlimited. This argument shows once again
(without invoking the concept of uniformity) that a general principle of relativity, as
a physical principle, holding in relation to arbitrary frames of reference, is impossible.

(It should be remembered that in the general case the expression for ds2,
though always a homogeneous function of the coordinate differentials, may also
depend in a non-homogeneous way on the coordinates themselves.]

But as a motivation of the requirement of covariance of the equations a
general principle of relativity is also unnecessary. The covariance requirement can be
justified independently. It is a self-evident, purely logical requirement that in all
cases in which the coordinate system is not fixed in advance, equations written down
in a different coordinate system should be mathematically equivalent. The class of
transformations with respect to which the equations must be covariant must
correspond to the class of coordinate systems considered. Thus if one deals with
inertial systems related by Lorentz transformations and if Galilean coordinates are
used, it is sufficient to require covariance with respect to Lorentz transformations.

o
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[(as was done in Chapters I and II of this book)] If, however, arbitrary coordinates are
employed, it is necessary to demand general covariance [(Chapter V)l

It should be noted that covariance of coordinate systems acquires a
definite physical meaning if, and only if, a principle of relativity exists for the dass of
reference frames used. Such is the covariance with respect to Lorentz
transformations. This concept was so fruitful in the formulation of physical laws
because it contains concrete chrono-geometric elements (recnlmeanty and uniformity
of motion) and also dynamic elements (the concept of inertia in the mechanical and
the electromagnetic senses [; Section 5]). Because of this, it is related to the physmal
principle of relativity and itself becomes concrete and physical. If, however, in place
of the Lorentz transformations one discusses arbitrary transformations, one ceases to
single out that class of coordinate systems relative to which the prmcxple of relativity
exists, and by doing this one destroys the connection between physics and the concept
of covariance. There remains a purely logical side to the concept of covariance as a
consistency requirement on equations written in different coordinate systems.
Naturally this requirement is necessary, but it is always satisfiable.

In dealing with classes of reference frames that are more general than
that relative to which a principle of relativity holds, the necessity arises of replacing
the explicit formulation of the principle by some other statement. The explicit
formulation consists in indicating a class of physically equivalent frames of reference;
the new formulation must express those properties of space and time by virtue of
which the principle of relativity is possible. With the assumption of a rigid metric
this is achieved by introducing an additional equation (49*.07). We saw [in this
chapter] that with the additional assumption of the absence of a universal scale (K =
0) these equations lead to a generally covariant formulation of the theory of relativity,
without any alteration of its physical content. The Galileo-Lorentz pnncxple of
relativity is then maintained to its full extent.

The very possibility of formulating the ordinary theory of relativity in a
generally covariant form shows particularly clearly the difference between the
principle of relativity as a physical principle and the covariance of the equations as a
logical requirement. In addition, such a formulation opens the way to generalization
based on a relaxation of the assumption of a rigid metric. This relaxation provides
the possibility of replacing the supplementary conditions (49*.07) by others which
reflect better the properties of space and time. This leads us to Einstein's theory of
gravitation, which [will be discussed in the following chapters.] is discussed on all -
spacetime scales in Appendices VI and VII.

APPENDIX VI :

(The following text is published in the Theory of Space, Time and Gravitation,
Chapter V, pp. 183-209 and is incorporated herein by reference.

According to the present invention, departures from the text have been made.
Additions are underlined and deletions are [bracketed] and initialed.)

THE PRINCIPLES OF THE THEORY OF GRAVITATION

50. The Generalization of Galileo’s Law

The most essential characteristic of the gravitational field by which it differs
from all other fields known to physics reveals itself in the effect of the field on the
motion of a freely moving body of mass point. In a gravitational field all otherwise
free bodies move in the same manner, provided the initial conditions of their °
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motion, i.e. their initial position and velocities, are the same. This fundamental law
may be thought of as a generalization of Galileo’s law that in the absence of resistance
all bodies fall equally fast.

It is appropriate to recall at this point the definitions of inertial mass and of
gravitational mass. Inertial mass is the measure of the ability of a body to resist
acceleration; for a given force the acceleration is inversely proportional to the inertial
mass. Gravitational mass is the measure of the ability of a body to produce a
gravitational field and to suffer the action of such a field; in a given field the force
experienced by the body is proportional to the gravitational mass.

Using these definitions the aforementioned generalization of the Galileo’s law
can be formulated as a statement that the inertial and the gravitational masses af any
body are equal. .

The atomic basis for Galileo’s law is that all matter is composed of
fundamental particles comprising matter with mass that is confined to three-
dimensional space-time. The two-dimensional spatial manifold of ordinary matter is
a spherical shell. Such a manifold possesses positive curvature. Einstein’s field
equations are solved by equating the discontinuity of mass as given in the two-
dimensional spatial manifold with the discontinuity of curvature of Riemannian

spacetime. It will be demonstrated that the resulting gravitational equation contains

- the entire mass of the manifold which is also_the inertial mass. Einstein's field

equations are derived on the basis of this equivalence, and they are solved by
matching boundary conditions at a Mills orbital. Thus, a self consistent gravitational
theory valid over all scales is developed which unifies the General Theory of -
Relativity and the novel atomic model of the present invention. ,
According to Newton the gravitational field can be characterized by the .
gravitational potential U(x,y,z). The gravitational potential produced by an isolated *
spherically symmetric mass M at points exterior to itself is

™

U= 5 (50.01)

where r is the distance from the center of the mass. The quantity y is the Newtonian .
constant of gravitation-in c.g.s. units it has the value
1cm3

715000 000 g sec ((50.02)
Thus U has the dimensions of the square of a velocity. We note immediately that in
all cases encountered in Nature, even on the surface of the Sun or of super-dense
stars, the quantity U is very small compared to the square of the speed of light

U<<c2 (50.03)

In the general case of an arbitrary mass distribution the Newtonian potential U it :
produces satisfies Poisson’s equation

AU =—4myp (50.04)
where p is the mass density. The Newtonian potential is fully determined by
Poisson's equation together with continuity and boundary conditions which are as
follows: the function U and its first derivatives must be finite, single-valued and
continuous throughout space and must tend to zero at infinity. o




10

15

20

30

35

WO 90/16073 PCT/ US90/Q3441
47 '

Let us assume that the Newtonian potential U is given. The force experienced

by a body (mass point) of gravitational mass (m)gr in the gravitational field of
potential U is .

F = (m)grgradU (50.05)
On the other hand, by Newton's laws of motion, we have ' b
(m)inw =F (50.06)
Therefore ’
(m)jpw = (m)grgrad U (50.07)

By the generalization of Galileo's law the motion of the body in a g1ven grawtatlonal
field cannot depend on its mass. Therefore, the ratio of inertial mass (m)j, to the

gravitational mass (m)or must be the same for all bodies; it is thus a universal

constant whose value can only depend-on the choice of units for the two masses. In

the units quite generally accepted one has 51mp1y 7
(mip = (m)gr = (50.08)

so that the inertial and gravitational masses are equal

The equality of inertial and gravitational mass is such a familiar fact that it is
usually accepted as something obvious. However, the matter is not so simple: their
equality is a separate and very important law of Nature, closely connected with the
generalization of Galileo's law.

As a result of the equality of inertial and gravitational mass the equation of
motion

=grad U (50.09)

has universal character, and thus formally expresses the generalization of Gahleo 5
law.

We note that the equations of motion (50.09) can be obtained from the
variational principle

v2
5 j G+ dt=0 C (5010)

This fact will be a guide to us in constructing the theory of gravitation.
51. The Square of the Interval in Newtonian Approximation

The phenomenon of universal gravitation forces us to widen the framework
of the theory of space and time [which was the subject of the foregoing chapters.] The
necessity of this widening becomes clear from the following considerations.

ko
RIS

L

It follows from the equation of wave front propagation, which can be stated in

the form

1( ) [(&D) (&D) (&D)] =0 (51.01)

that light is propagated in straight lines. But light possesses energy and by the law of
proportionality of mass and energy all energy is indissolubly connected with mass.
Therefore, light must possess mass. On the other hand, by the law of universal
gravitation, any mass located in a gravitational field must experience the action of
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that field and in general its motion will therefore not be rectilinearl . Hence it -
follows that in a gravitational field the law of of wave front propagation must have a
form somewhat different from the one given above. But the equation of wave front -
propagation is a basic characteristic of the properties of space and time. Hence it
follows that the presence of the gravitational field must affect the properties of space
and time and their metric is then not a rigid one. This is indeed the conclusion
reached in the theory of gravitation which we now begin to construct.

[As was shown in Chapter I the] The equation of wave front propagation
(51.01), with some additional assumptions, leads to the following expression for the
square of the interval:

ds2 = 2dt2 - (dx2 + dy2 + dz2) (51.02)

The influence of the gravitational field on the properties of space and time must
have the consequence that the coefficients in the equation of wave front propagation
and in the expression for the square of the interval will differ from the constank’
values appearing in (51.01) and (51.02). We must now find an approximate form for
the square of the interval in a gravitational field of Newtonian potential U, relying
on the generalization of Galileo's law to guide us. The fundamental fact that the law
of motion for a body moving freely in a gravitational field is a universal one which
does not depend on the nature of the body permits us to find the relation between the

- law of motion and the metric of space-time.

The equations of a geodesic in a space-time with given metric [were studied in
Section 38] are given in Appendix IV. We shall now try to find a metric such that
these equations coincide approximately with the Newtonian equations of motion for
a free body in a given gravitational field. If this attempt is successful it will enable us
to introduce the hypothesis that in a space-time with given metric a free body (mass
point) moves along a geodesic; in this way the connection between the law of motion -
and the metric will be established.

As we know, the equation of a geodesic may be derived from the variational
principle

5[ ds=0 © (51.09)
If the squared interval is of the form (50.02) we have
ds =V (cZ-v2)dt (51.04)
or, for small velocities,
v2

ds= (c - E}it (51.05)

Inserting (51.04) or (51.05) into (51.03) gives equations that describe motion
with constant velocity, which indeed is free motion in the absence of a gravitational
field. We can now assume that for small velocities and weak gravitational fields
(U<<c?) the expression for the interval takes the form

ds =V (c2-2U - v2)dt (51.06)

1 The theory of the deflection of light in a gravitational field was given in Appendix I. Also see

Appendix IV for an expossition that a wavelenghtis a two-dimensional manifold, a Miils orbital.
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or
11 |
ds= [c < Gv2 U)] dt (51.07)

+ The theory of the deflection of light in a gravitational field [ is given in Section 59

below.] was given in Appendix I. Also see Appendix IV for an exposition that a
wavefront is a two-dimensional manifold, a Mills orbital.

in place of (51.04) or (51.05). Since neither an additive constant nor a constant
multiplier are of any 1mportance in the Legrangian the variational principle (51.03),
with ds taken from (51.07), gives the same result as the variational principle

V2
aj (5 +Udt =0 (51.08)

which was formulated at the end of Section 50, but this did indeed describe free
motion of a body in a gravitational field.

It is true that just because additive constants and multiplicative factors in a
Lagrangian are immaterial equation (51.08) could be obtained from (51.03) and (51.06)
with any sufficiently large value of the constant ¢; but we must require that in the
absence of gravitation, when U = 0, the expression (51.06) for the interval shall go
over into the Galilean form (51.04) whatever the value of v2. This requirement fixes
the constant ¢ in (51.06) to be equal to the speed of light.

These arguments give us good reason to assume that under conditions

U<< 2

dt) Tladt dt
the square of the interval differs little from the form
ds? = (c2 - 2U)dt2 - (dx? + dy2 + dz2) (51.10)
Here the relative error in the coefficient of dt2 will certainly be of higher order than
the term 2U/c2 which is included. As regards the coefficient of the purely spatial part

of the interval, it may differ from unity by a quantity of the same order as 2U/c2.
Indeed, the theory of gravitation to be developed in the following sections gives the
more exact expression

ds? = (c~2U)dt2 - (l + 2 ) (dx? + dy2 +dz?)  (5L11)

Under the conditions (51.09) the difference between (51.10) and (51.11) is
negligible, as it should be.

In principle the value found for the coefficient of dt2 is capable of experlmental
verification.
Let us assume that at some point (x1, yi, z1) at which the grav1tational

potential is Uj, there is some emitter of radiation of proper period Tg. The wave
radiated by it will have a time dependence of the form

exp (iZn :l:t'l-j (51.12)

+ ((—iz)z + (3)2 =v2Zc<c2 (51.09)
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where T7 is not equal to T but is related to it in the same way as dt is related to dt, -
the differential of the proper time of the emitter. If, for simplicity, the emitter is )

assumed to be at rest in the frame of reference chosen, we have approximately

le(1- 22 (5113
d‘C=CdS-—(1— Czldt .13)

and therefore

F Up
Tp= (1 - z) T1 (51.14)

In this problem the dependence of the gravitational potential on time may be
ignored, so that the gravitational field can be treated as static. Then the wave being
propagated from the emitter will retain its time dependence (51.12) throughout space. |

Let us assume further that at some other point (x3, y2, z7), where the
gravitational potential on time may be ignored, so that the gravitational field has a

different value Uy, there is a second identical emitter, e.g. another atom of the same

element. The wave emitted by it will have a time dependence throughout space of
the form
t
121 = 51.15
(e ) euzs
where

U2
To= (1 - zj Ty (51.16)
Thus the two waves emitted by identical sources but originating from places of
different gravitational potential have periods differing by

Up-U
Tp-T1= ZCZ 1 To (51.17)

If Uy is the potential on the Sun and Uj is the potential on the Earth we have Up > |

U1 and the numerical value of the factor Tg in (51.17) is approximately equal to

Us ~U ‘
2 2 1 2x10-6 (51.18)

Thus the wave lengths of spectral lines originating on the Sun must be displaced
relative to the corresponding lines produced on the Earth by two parts in a million

towards the red end of the spectrum.

However, one must note that the emission of the spectral lines on the Sun s

takes place in physical conditions different from those on Earth and that the change
of period due to the difference of gravitational potentials is to a great extend masked N

by other corrections.
There are, however, certain super-dense stars, such as the companion of Sirius,

which have a density tens of thousands of times greater than that of water. On their
surfaces the value of gravitational potential is significantly grater than on the surface
of the Sun-twenty times greater in the case of the companion of Sirius_for such stars

the correction due to the difference in gravitational potential becomes very

appreciable and can be detected experimentally.

i‘ ¥ AT
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[Recently, (1959)] Also, the influence of the gravitational potential on the
frequency of emitted light was successfully revealed in terrestrial conditions by
making use of the Mossbauer phenomenon as described in Appendix L| ]

52. Einstein's Gravitational Equations

Einstein's theory of gravitation in its restricted, non-cosmological, form has
the following basic idea.

The geometrical properties of real phy51ca1 space and time correspond not to
Euclidean but Riemannian geometry [In Chapter IIl we discussed the basic postulates
of this geometry]. Any derivation of geometrical properties from their Euclidean, or
to be precise, pseudo-Euclidean form appears in Nature as a gravitational field. The
geometrical properties are indissolubly linked with the distribution and motion of
ponderable matter. This relationship is mutual. On the one hand, the derivations of
geometrical properties from the Euclidean are determined by the presence of
gravitating masses, on the other, the motion of masses is determined by these
derivations. In short, masses determine the geometrical properties of space and time,
and these properties determine the movement of the masses.

We shall now attempt to formulate these ideas mathematically.

In the previous section we saw that in a certain coordinate system, which for
practical purposes coincides with an inertial frame of Newtonian mechanics, the
Newtonian potential of gravitation U enters the coefficient of dt2 in the expression
for the square of the interval, i.e. the coefficient gpp of the general expression

d52 = guvqudXv (52.01)
On the other hand, in Newtonian approximation the gravitational potential U
satisfies Poisson's equation
AU =-4myp (52.02)
The required generalization of Newton's theory of gravitation must be covariant
with respect to arbitrary coordinate transformations. Therefore, it is impossible to
regard as a generalization of the Newtonian potential a term in the coefficient ggg or

this whole coefficient; instead the whole set of coefficients gy must be taken into
consideration and must appear as the generalization of Newton's potential. The
fundamental metric tensor must satisfy a set of equations that are generally covariant
and in the Newtonian approximation one of them must go over into Poisson's
equation for the potential U. The total number of equations must, generally
speaking, be equal to the number of unknown functions, i.e. to the number of

components of the tensor gy, which is ten.

On the left-hand side of Poisson's equation there is a second order differential
operator, the Laplace operator, acting on U. Therefore, the simplest generally
covariant generalization of this left-hand side will be a tensor which involves
linearly the second derivatives of the metric tensor gy. '

Such tensors are the curvature tensors (either of second or fourth rank). The
fourth rank curvature tensor Ruv,af} is unsuitable because its components do not
contain expressions which could be generalizations of the Laplace operator acting on
U. Also has too many components, the number being twenty, twice as many as there

s a
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are unknown functions2. Therefore, there remains the second rank curvature tensor -
which has just the right number of components. .

On the right-hand side of Poisson's equation the mass density p appears. A
generalization of the mass density which has the required tensor character is the mass

tensor THV whose invariant is equal to the invariant mass density.

We are thus led to the conclusion that the required generalization of Poisson's ’
equation must be a relation between the second rank curvature tensor RHV and the
mass tensor THY.

[In the previous chapters we saw that in] In the absence of gravitational fields
the divergence of the tensor THY must vanish

VyTHV =0 (52.03) .
[We shall retain this equation for the general case, postponing the discussion of

questions connected with it (questions of the energy of a gravitational field, of the
integral form of conservation laws, etc.) until Chapter VII

But we establish at the end of Chapter III that] the tensor
1
GHV =RHV — 5 gHVR (52.04)

which is known as Einstein's tensor, or the conservative tensor, has the remarkable’
property that its divergence is identically zero.

VyGHY =0 (52.05)
Therefore, if we put

RUV - % gHVR = —xTHV (52.06)

where x is a constant, equations (52.03) for the mass tensor will be a consequence of
(52.06).

As we know, the metric tensor guv itself also satisfies (52.05); therefore, we ~

could add to the conservative tensor on the left-hand side of (52.06) a tensor of the ,7 :

form lgmn where A is a constant , without violating (52.03). ;

[We saw in Section 31 that if] If one imposes purely local conditions on the
mass tensor (the condition that it should depend on the field components or other
functions of state, but not on the coordinates; the vanishing of its divergence by
virtue of the field equations) it is only determined apart from two constants. To be

more precise, if the tensor THV satisfies the conditions stated, these are also satisfied by .
T'HY = aTHV +BgHV (52.07)

Here the constant a depends on the choice of energy unit, the constant P also on the
conditions at infinity. If in supplementation of the local conditions one demands

2 [Itis true that even an excessive number of equations for the tensor Rmn,ab might prove to be
compatible as is the case for a space of constant curvature (equation (49.12)) but in that case the equations
permit the metric to be determined purelly locally, i.e. without using boundary conditions. They

therefore have a character different from that of Poisson's equation for which boundary conditions are
essential.]
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that at infinity , where the field vanishes, the mass tensor should also be zero, then B
will be zero and the mass tensor is determined uniquely.

Replacement of the tensor THV by the linear function (52.07) of itself
corresponds to replacing the gravitational equations (52.06) by.

RHV - %gPVR = —xTHY — AghV (52.08)

The constant A is called the cosmological constant. It is clear from these remarks that
the question of the value of A acquires a definite meaning only after the conditions

are formulated by which the tensor THV is to be defined uniquely. - Such condition
will necessarily be of non-local character; they can therefore only be formulated
starting from definite assumptions about the character of space-time as a whole.

At the beginning of this section we stated the basic assumptions of Einstein's
theory of gravitation in its limited (non-cosmological) formulation. According to
these the concept of spatial infinity retains its meaning, space-time at infinity being
pseudo-Euclidean (Galilean). Deviations from Euclidean character are observed only
at a finite distance from massive bodies. But in this case the mass tensor may
continue to be subject to the requirement stated for the case when the whole of space-
time was assumed pseudo-Euclidean. We can demand that at infinity, where the
field vanishes, the mass tensor should also become zero. It then has a uniquely
defined meaning to inquire after the value of the cosmological constant and the
answer can be based on the following consideration. According to our basic
postulates, the absence of a gravitational field signifies the absence of deviations of
the geometry of space-time from the Euclidean, and therefore also the vanishing of '

the curvature tensor REV and of its invariant R. On the other hand, the gravitational ’

field will be absent if the tensor THV is zero everywhere. Therefore, the equations THY
= 0 and RHV = 0 must certainly be compatible and this is only possible if the equations |

relating to THV do not contain the term AgHV (i.e. if A =0). .
Thus, given the assumptions formulated at the beginning of this section and
given our definition of the mass tensor, the appropriate generalization of Poisson's
equation for the potential will just be equations (52.06).
As for equations (52.08), they should be used if the problem is stated

cosmologically, in which case the concept of spatial infinity is inapplicableand the "‘

tensor THV contains an unknown constant B, even after units have béen fixed.
According to the value of this constant the value of the so-called cosmological

constant A must be selected; it is evidently related to B. The choice of some particular

value of A for a given normalization of THV represents a special hypothesis, which

must be introduced explicitly; this is true also for the value A = 0.

According to the novel atomic model of the present invention, the energy of a
vacuum is zero; thus, the cosmological constant of the model is zero. This is the -
exact experimental determined value. The model unifies atomic¢ theory and
gravitation on a cosmological scale. It is demonstrated in Appendix VI that the
solution of Einstein’s field equations as a boundary value problem if a Mills érbital
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unifies atomic theory and the General Theory of Relativity on a atomic level to -

provide a completely unified gravitational theory for spacetime of all scales. [
Returning to the non-cosmological case and to equations (52.05) we may assert

that under the conditions stated (correspondence with Poisson’s equation, general_"

covariance, linearity in the second derivatives of the ghV, identical vanishing of the
left-hand side of (52.05) and Euclidean character in absence of masses) these equations .
are unique.

' The equations (52.06) are called Einstein’s gravitational equations; they play a =
fundamental part in the theory of gravitation. They will be examined in the
following sections. K
53. The Characteristics of Einstein’s Equations. The Speed of Propagation of
gravitation.

We begin our discussion of Einstein’s gravitational equations
1
RHY — 5 gHVR = —THV (53.01)

with the derivation of the first order equation for their characteristics. From a
physical point of view the equation of the characteristics represents the propagation
law for the wave front of a gravitational wave.

Multiplying (53.01) by g,y and summing we obtain the relation

R=xT (53.02)
connecting the invariants of the curvature tensor and of the mass tensor. This
relation enables us to write the gravitational equations in the form

1
RV = — x(THV - 5gIVT) (53.03)
The contravariant curvature tensor Ry is expressible as
v = Loop 08 — THY 4 TPV (53.04)
=728 Oxodxp , B ’
where TH:0B is the quantity obtained from I'top by raising suffixes

ru,aB=gaprGrqu (53.05) »
Therefore, the last term in (53.04) does not involve second derivatives but is a

homogeneous quadratic form in the I'VopB and hence also in the first derivatives of
the metric tensor.

Second derivatives appear in the first term and also in the THV, but the latter
dependence is only through first derivatives of the quantities

Iv=goBrveg (53.06) o

[which we introduced in Section 41. We recall that the] The d’Alembertian of any -

function y may be written in the form ' :

52y Sy
= g0 B—F— v
av=g Sxodxp  Bxy (53.07)

or, alternatively, as

‘:’V‘ St
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1 98 oy
= = ———— | V(-g) B —— . (53.08)
gy V-g) 8"15[ 98 BXa] ®
whence
1 .
o=- -g) gOB 53.09
) )a - tieg g™} (G309
and also -
Te=- []xq (53.10)

The T'HV are obtained from the I'V by the rule which is formally identical with the rule
for forming the symmetrical contravariant derivative of a vector:

THY = % (VHTV + VVTH) (53.11)

or in detail

53.12
ax.a SXa ( )

ny
A =% [guoc 2?, +gva ST+ 8g I‘G)

of course, since I'V is not a vector the THV are not a tensor. This circumstance proves
very useful in simplifying Einstein’s equations.

Einstein’s equations are generally covariant and therefore permit coordinate
transformations involving four arbitrary functions. Suppose the equations are
solved in some arbitrary system of coordinates. We can then go over to other

coordinates by taking as mdependent variables four solutions of the equation[J y=0.
These solutions may be chosen in such a way as to satisfy the inequalities to-which
the gHV must be subject, according to Appendix IV, they may also be subjected to some
additional conditions. But as long as each of the coordinates xg,X1,x2, and x3 satisfies
the equation [J xg = 0 we shall have in that system ‘
=0 ' (53.13)
and therefore also
WV =0 (53.14)
We shall call such a coordinate system harmonic. At the moment we are not
interested in the question of the uniqueness of the harmonic coordinate system or
rather in the additional conditions which could guarantee uniqueness. Here it is
important to note that the equations (53.13) are compatible with Einstein’s equations

and that they do not impose any essential limitation on the solutions of the latter,
serving only to narrow down the class of permissible coordinate systems.

Under the conditions (53.13) the expression of the RHV simplifies, becoming
RHV =— gaB S | vy op (53.15)
X 8xp
Hence second derivatives only appear c:ombmed in the d’Alembert operator acting on

the single quantity gtV which has the same indices as the particular RHV on the Teft-
hand side.
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The form of the equation of the characteristics for any given system of
equations depends only on the terms containing the highest occurring order of
derivatives. In the case of the system (53.01) and (53.13) these terms are just those
involving the d’Alembertian. RN

Therefore, the system of equations of gravitation will have the same
characteristics as d’Alembert’s equation, :

and these are easily found [A shown in Appendix C]. They have the form
do dw
V——=0 53.17
gp' SXLL SXV ( )
where (X, X1, X2, X3) = const. (53.18)

is the equation of a wave front, i.e. the equation of a moving surface on which any
discontinuities of the gravitational field must lie.

The equation (53.17) for the propagation of a gravitational wave-front is the
same as the corresponding equation for the front of a light wave in empty space on
which the whole theory of space and time was based3. Briefly one can say that -
gravitation is propagated with the speed of light.

That in Einstein’s theory gravitation is propagated with the speed of light is a »
fact of fundamental significance. It shows that the assumed form of the gravitational .
equations is in agreement with the general postulate of the Theory of Relativity -
according to which there exists a limiting velocity for the propagation of all types of
action, namely the velocity of light in free space. The existence of a finite propagation .,
velocity for gravity removes the contradiction inherent in Newton’s theory of
gravitation with its admission of instantaneous action at a distance.
54. A Comparison with the Statement of the Problem in Newtonian Theory.
Boundary Conditions

In Newton’s theory of gravitation the gravitational potential satisfies the
equation

AU = - 4nyp (54.01)
and tends to zero at infinity in such a way that

lim rU =yM (54.02)

I'—yoo

where M is the total mass of all the bodies of the system in question and is equal to

M= [pdxdydz (54.03)
Einstein’s theory, which is based on the gravitational equations

1
RHV - SBHVR = -xTHV (54.04)

3 [When we derived that law from Maxwell’s equations in Section 3, we assumed space-time to be
Euclidean. But, according to a remark at the end of the Appendix E, the same result can be obtained

without this assumption, starting from the generally covariant form of Maxwell's equations given in
Section 46.]
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must, in first approximation, give the same result as Newton’s theory. Newtonian
theory is applicable to such mass distributions for which the total mass, given by the
integral (54.03) taken over all space, remains finite. This condition is in particular
satisfied by any mass distribution of insular character. We use this term to describe -
the case that all the masses of the system studied are concentrated within some finite
volume which is separated by very great distances from all other masses not fortiing
part of the system. When these other masses are sufficiently far away one can neglect
their influence on the given system of masses, which then may be treated as isolated.
In formulating Einstein’s theory we should likewise start from the assumtption
that the mass distribution is insular. This assumption makes it possible to impose
definite limiting conditions at infinity as for Newtonian theory, and so makes the

. mathematical problem a determined one. :

Theoretically, other assumptions are admissible. For instance, one can assume
a mass distribution which on the average is uniform throughout space. Such a point
of view is appropriate to the study of distances so enormous that in comparison even
the distances between galaxies are taken to be very small. Very little is known of the
mass distribution over such great distances and therefore a theory dealing with them
will necessarily be less reliable and less capable of experimental verification than the
theory of smaller scale astronomical phenomena.

[The bulk of this book will be devoted to the case of insular distributions of
masses. The assumption of uniform distribution will be considered only in Sections
94 and 95, where we give the theory of Friedmann-Lobachevsky space to which this
assumption leads.]

We shall thus now assume that space-time is in the main Euclidean, or rather

pseudo-Euclidean, and that any deviation of space-time geometry from Euclidean -

geometry is a result of the presence of a gravitational field. Wherever there is-no -
gravitational field, geometry must be Euclidean. For an insular distribution of
masses the gravitational fields must tend to zero at infinity and therefore we have to
assume that at points far removed from the masses the geometry of space-time .
becomes Euclidean. However, when geometry is Euclidean there exist Galilean
coordinates X, y, z and t, in terms of which the square of the interval has the form

ds? = c2dt2 - (dx2 + dy2 + dz2) (54.05)

Since experiment shows that the geometry of space-time nowhere deviates greatly

from Euclidean geometry one may expect that there should exist in the whole space
variables in terms of which the square of the interval deviates but little from (54.65).
In the following we shall give a more precise definition of these quasi-Galilean
coordinates. , ‘

We note that Newton’s theory is simplest to formulate in just these Galilean
coordinates, i.e. in an inertial frame of reference. Consequently Einstein’s theory,
which is its generalization, should be compared with it in terms of coordinates with
as similar properties as possible.

Newtonian theory is non-relativistic and in passing from a relativistic theory
to a non-relativistic one, it is especial to single out the speed of light as a large
parameter. Therefore we shall no longer introduce the quantity c into the parameter;
instead of (35.03) we shall now write

X0=t X1 =X Xp=y; X3=2 (54.06)
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Thus henceforth the variable xg will mean simply that time t and not ct as
previously. ‘
The expression (54.05) for the square of the interval now appears as
ds? = c2dxq? - (dx}2 + dxo2 + dx32) (54.07) )
This must be valid at sufficiently large distance from the masses, where the geometry
is Euclidean. :
Comparing with the general expression

ds? = gy ydxydxy (54.08)
we find that the guv must have the following limiting values at infinity
(8oo)ee =% (goi)wo =0 (54.09)

(gik)oo == Sik (il k= 11 2/ 3) ‘
The corresponding limiting values of the contravariant components of the metric
tensor will be o

1 . .
§%)ee = 3 8o =0; (g1K)ee = —8jxc (54.10)

These are then to be considered as the boundary conditions on the metric tensor.
However, the number of boundary conditions so far stated is insufficient; some
additional ones must be added which characterize the asymptotic behavior of the

differences guv ~ (gpv)es at large distances from the masses.

In the previous section we saw that, at least if 'V = 0, Einstein’s equations are of
the type of the wave equation, because their main terms involve the d’ Alembert

operator. Outside the mass distribution the tensor THV vanishes and the equations
take on the form ’

e

RHV =Q (54.11)
where, provided I'V = 0, the tensor RHVY has the form
uv 1 B i v,oBrv o
RHV = 550 SXOLESXB+ rv.oBrveg (54.12)

We assume that at large distances the differences gtV ~ (gHV)eo and their first andi ,
second derivatives tend to zero as 1/r, where r = V(x72 + x2 + x32). (This assumption
will be justified in the following.) Then at large distances the second term of (54.12),

being a homogeneous quadratic form in the first derivatives, will tend to zero as 1/r2.
As for the term involving the d’Alembertian, the coefficients in it can be replaced by..
their limiting values to the same approximation. After these simplifications we get

1 pv 52V 52V Y
RW=-— g + : + + g
2¢4 Bxp2 2| 6x12  8xp2 8x32
It can be shown [A more complete investigation of the asymptotic behavior of the ghv =,

will be given in Section 87. It shows] that the asymptotic form of ghV is influenced by E
the terms of order 1/r2 omitted from (54.13) but that qualitatively the behavior of the-

] (54.13)
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difference ghV — (gHV)e will be the same as the behavior of a functiony‘“\v satisfying the
wave equation

22 ~Av=0 (54.14)

where A is the usual, Euclidean Laplace operator.
We are interested in solutions of the wave equation (54. 14) which correspond
to outgoing waves dying off at infinity. They have the asymptotic form

1 r
Y= ;f(t - E,n) (54.15)
where n is a unit vector with the components
X z
ny =5 fy= % nz=g (54.16)

and f is an arbitrary function. The function f and its derivatives with respect to all its

arguments are assumed finite. The argument n gives the dependence of f on the
direction along which a point recedes to infinity.

Other possible solutions of the wave equations, must be discarded for physical
reasons, for in our statement of the problem the system is considered to be isolated.
This means that no waves impinge on it from outside, all waves have bodies of the
system as their sources and, since in a system of insular type all bodies are
concentrated in a finite region, all waves originate in this region and so have the
asymptotic form (54.15) at large distances from the region.

The conditions that a solution of the wave equations should at large dgsfances
have the form indicated can be stated in the differential form g ‘

3(ry) 106(ry)

— ——— 0
m( st < ot )

This condition must hold for r— and all values of tg =t + r/c in an arbitrary

(54.17)

fixed interval. It can be called the condition of outward radiation. It ensures the .

uniqueness of the solution provided it is associated with the requirement that the
function y and its first derivatives with respect to x, y, z and t should be everywhere
bounded and should die off at infinity as 1/r.

We note that above considerations refer strictly speaking to the ordinary wave
equation (54.14) and not to Einstein’s equations. Therefore, the asymptotic form of
the difference.

ghY — (gHV),, =y (54.18)

will, in fact, differ somewhat from (54.15). However, a slightly modified condition of

outward radiation written in the differential form (54.17) will be valid for (54.18).

Summing up, we can say that in our statement of the problem the metric
tensor must satisfy the condition of being Euclidean at infinity and also the condition =

of outward radiation.
55. Solution of Einstein’s Gravitational Equations in First Approximation and
Determination of the Constant

To compare the gravitational theories of Einstein and of Newton we must first
of all determine the constant x which enters Einstein’s gravitational equations

1
RHV — 5glVR = — xTHV (55.01)
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The value of this constant can be found by comparing the expression for the square of
the interval derived in Newtonian approximation in Section 51 with that obtainable
by approximately solving Einstein’s equations. .

For the mass tensor on the right-hand side of (55.01) we may take the
approximate expression corresponding to a Euclidean metric, where the mass term is
given explicitly for the case of an elastic body as follows:

T00 =p +—1-G):pv2 + pl’[)

2

0i-liy s Lloiiev2 i . ‘

T =Pvit3 i(EPV +p1'1)—k PikVk (3234
=1

o1
Tk = 7 (pvivk — pix)

In the equations X(_Imeans simply the time and not ct: therefore, the notation T00 will

presently be equal to ¢2 T00; and TUI of equations (32.34) will presently be equal to-

cT Oi; and TiK is unaltered.
Thus if x0 = t the equations (32.34) become

1
2100 = p + 2(%pv2+p1'1)

3
. 1 1
2101 = pvi+ ) {vi(5pv2 +pID) - Y pavid  (55.02)
k=1
c2Tik = pv;vy - Pik
In the present approximation we must disregard the terms corresponding to the
density and current energy-Umov’s scalar and vector-and we write simply
2100 = p; 2701 = py; (55.03)

To the same accuracy to which this is valid we may replace the invariant of the mass
tensor by the value

T = p (55.04)
Equations (55.03) and (55.04) enable us to calculate the approximate values of the

tensor components entering the right-hand side of Einstein’s equations written in the
form

1
RHV = — x (THV — — glVT) (55.05)
which was given in (53.03). Using the Galilean values of the ghV we get
1 1
TOO — 5 go0T = 22 P

.1 . 1
TO1 5 goiT = ; pvy (55.06)
ik _Loikp_1
T -5 glXT =5 Pdjk

On the other hand, according to (54.13), if we use harmonic coordinates we -
have approximately,

e Vo
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1 &2gHV
V.
RH 2A ghv — ) —5——&2 (55.07)

where A is the usual Euclidean Laplace operator. As we shall be interested in a quasi-
static solution we can discard the term involving the second time derivative.
Inserting (55.07) and (55.06) into (55.05) we have

X
AgOO = ——c—2 p
2x
Agol =~ 5 PVi (55.08)
Aglk = ‘XP5ik

We now refer to the expression for the squared interval in the Newtonian
approximation. According to (51.10) we have then

goo = ¢2-2U (55.09)
where U is the Newtonian potential. In this approximation the remaining
components of the metric tensor are to be replaced by their Galilean values. Using
the relation

3
8008%0 + 2 8oigl0 =1 (55.10)
i1
and the fact that the products gu;gi0 are very small compared to unity we can take
8008%° =1 (55.11)
and therefore
1 20
C2 & (85.12)
But Newton’s potential satisfies the equation
AU = - 4myp (55.13)
hence :
8
Ago0 = - %Yp (55.14)

Comparing this with the first equahon in (55.08) we see that the two are comddent if -
Einstein’s gravitational constant x is related to Newton’s constant g by the relation

X =—CZ— (55.15)

The Newtonian potential U is that solution of (55.13) which satisfies the appropnate |
boundary conditions at infinity. As is well-known that solution can be written in the
form of a volume integral:

U=y jl —dx' dy' dz' (55.16)

Side by side with this Newtonian potential we introduce the functions
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(p,vy)'
Uj=v J’l: ll dx' dy' dz' (55.17)
which satisfy '
AUj = - 4 mypv; (55.18)

and also the conditions at infinity. In analogy with the corresponding

electromagnetic quantities these functions may be called gravitational vector
potentials. Now the solution of (55.08) can be written as

Sk

. 4
gol = P Ui (55.19)

We have used (55.15) to eliminate x.

i
i

We note that U has the dimensions of a velocity squared and the Uj the . |
dimensions of a velocity cubed. In estimating the orders of magnitude of quantities * '
we can take U to be of the order g2 and the Uj of the order g3, where q is some speed

much smaller than the speed of light.

It is now purely a matter of algebra to obtain from the contravariaht "
components of the metric tensor its covariant components, its determinants, etc.

To simplify the algebraic manipulations we introduce a system of quantities

ajk =—gik + 8(;1§§k ; alk=—gik (55.20)
where i, k =1,2,3. Itis easy to verify that
3
> ajmamk = §;1 (55.21)
m=1

The set of quantities aj; may be interpreted as the three-dimensional spatial metric
tensor, but only its algebraic properties are of importance to us here.

If we put :

a = Det aji (55.22)
and therefore

1 .

5 = Det alk (55.23)
we get

g=—aggo (55.24)
It follows directly from definition (55.20) that

3
8oogOk = Z aLmkgmo (55.25)
m=1

and also
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3
gio=8oo 2 kg% (55.26)
m=]
If the ghV have the values (55.19) it follows that
alk = ( )511( (55.27)
and therefore
2
ajk = (l + ?U) ik’ (55.28)
- Noting the form of gop we get
8oodik = ¢23ik (55.29)

with an error of order higher than U/ 2.
Hence, with the same relative error, we have

gio = c2glo (55.30)
Using the results we obtain for the covariant components of the metric tensor
goo0 = c2 20
8oi = 2'2‘ Ui (55.31)

2U
81k=‘(1+ Cstlk
Knowing the approximate values of the goi and the goi we can now verify the
accuracy to which the use of (55.11) was justified We note that (52.26) leads to©

googoo 1- 6 z Ul (55-32)
i=1 ‘

If the Uj are the order g3 the above expression differs from unity by quantities
of order q2/c2. Therefore, (55.11) may be used not only in this but also in the next
higher approximation in U/c2 or v2/c2. We note that (52.26) leads to

3
8008%° =1-800 2. aikglgok (55.33)
ik=1

Here goo is positive and the double sum is a positive definite quadratic form, .

therefore we shall always have, quite rigorously
80080 <1 (55.34)
though, as we shall have seen, the deviation from unity of the left-hand side is
exceedingly small. : 5
We now state the value of the determinant g and of V(- g) times the
contravariant components of the metric tensor. We shall write
ghv =(-g) - ghv (55.35)
We then have
—g=c2+4U - (55.36)
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and therefore
V-g)=c+ % (55.37)
Hence, using (55.35)
1 4U
00 =, 22
g “c + C2
. 4
gol = C_ZU i (55.38)
gik =~ cBix

We must estimate the magnitude of the neglected terms in RMM which are quadratic |
in the first derivatives.

These terms are of the form I’llauﬁI‘Vaﬁ. To calculate approximate values of
the Christoffel symbols we could use the approximate form of the metric tensor that
has just been derived. However, we shall not perform these calculations here [as the
quadratic terms will be determined in detail in Chapter VI where we shall solve the
gravitational equations in the next approximation.] Here we only need the order of
magnitude of the quadratic terms. It turns out that the terms in R0 and Roi will be
the sixth and those in Rik of the fourth order in 1/c. In our present approximation .
these terms have no influence.

It remains to verify whether the conditions which ensure that the coordinates
are harmonic,

R S

=———. — o). gV} =
o 5Xu{\l( g)-g 0 (55.39)

are satisfied to the approximation required. Let us first make it clear to what accuracy .

we require them to hold. If we do not omit the terms in 'V in the expression (53.04)5%"

for RHV but instead retain them to the accuracy corresponding to the approximation
(55.07) for the other terms, we obtain in place of (55.07)

1 1 §2g00 1 §[0
00 = —Ap00 _ — _—
RP% =28 22 52 2 §t

.1 . 1 8ol 1(§ro 1 gri
ROI = A0l . — ol P .
288”32 52 +2(5xi 2 at) ©540)
a1 o 1 8k 1/5ri grk
Rik = 2p0ik _ = S
267 702 g2 * 2[8)(1( 5)(1)

In order that the previously neglected terms in I'V should really be small compared to

terms of the type AgHV which were retained, it is necessary that Go should be of a
higher order of smallness in ¢ than 1/ctand Gl of a higher order than 1/c2. These

conditions are indeed satisfied. For it is directly evident from (55.38) that GI will be of o

fourth order in 1/c. As for GY, the terms of fourth order in it are
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3 SU:
4 U
AL S S (55.41)
A| 8t =1 Oxj

These must vanish. Therefore the equation

U $ i _

8t 18
must hold. As is evident from the definition of U the Uj (either by means of
differential equations with boundary conditions or in terms of volume integrals) this
equation is indeed satisfied as a consequence of the relation

(55.42)

5
R, Z (pvi) _ (55.43)

St i=1
which expresses the law of mass conservation in Newtonian approximation.

Thus the expressions just derived for the metric tensor satisfy to first
approximation not only the gravitational equations but also the “harmonic
conditions” . In addition they obviously satisfy the boundary conditions at infinity.
The expression for the square of the elementary interval corresponding to the
expressions derived is

2U

dx;

8
+ 7 Udxg + Updx2 + Usdxs) dt (55.44)

Usually the terms involving the products dxjdt are of no importance.
Omitting them we get the expression

ds2 = (c2-2U) dt2 - (1 + 32 ) (dxq2 + dxg2 + dx32) (55.45)

which involves only the Newtonian potential. This expression has already been
quoted without proof in Section 51, equations (51.11).
56. The Gravitational Equations in the Static Case and Conformal Space

The metric tensor is called static if its components do not depend on the time
coordinate xo = t, so that

o
. —i‘?= 0 (56.01)
and if, in addition,
goi=0 (=1,223) (56.02)

It is evident from physical considerations that if several masses are present
they must be in motion?. Therefore, a static metric tensor can only occur in the case
of a single mass. In spite of limited applicability, the static case is of some physical
interest, first of all because it permits a deeper insight into the analogy with the
Newtonian theory of gravitation (which is also a static theory) and also because in the

4 [The problem of the motion of a system of masses is considered in detail in Chapter VI
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static case it is easy to discuss the question of the uniqueness of the solution. Also, o
rigorous solutions of Einstein’s equations can be found in this case.

Under the conditions (56.01) and (56.02) the time coordinate is determined .
uniquely, while the space coordinates permit a group of transformations among , -
themselves. Therefore, it is natural, in this problem, to use the apparatus of three-
dimensional tensor analysis and to write the gravitational equations accordingly.
Three-dimensional tensor analysis can be applied either directly to the spatial part of - -
ds2, or else to this spatial part multiplied by some factor. Remembering the - .
approximate form of (55.29) obtained from Einstein’s equations, we introduce into the .
spatial part a factor inversely proportional to the factor in the time part, putting

1
ds?2= c2V2dt2-'V—2hikdxidxk (56.03)

We shall consider the quantity V2 to be a three-dimensional scalar and the quadratic -
form

do? = hjpdx;dx (56.04)
to be the squared length of the arc in a certain auxiliary space, which we shall call
conformal space. Three-dimensional tensor analysis will be applied to this conformal -
space. As may be seen by comparing (56.03) with (55.45), in the approximation in .
which the latter holds we can assume the conformal space to be Euclidean and the
quantity V2 to be related to the Newtonian potential U.

Thus we shall have

8oo =22, goi=0,

(56.05)
gik =— V2 7
and also
(56.06)
gik =—y2hik

Here the quantities hjx and hik are connected by

hyhk Zhk;  (hk; _ oKy (56.07)

this relation being analogous to (37.18) for the guv. Denoting by h the determinant of |
the hijk we easily obtain

V-g) = ——VCZ Vh (56.08)
Therefore we have
1
— o). 000 = ——
V-g)- g Al

(56.09) o
V(- g) - gik = — cVh- hik g
and the d’Alembert operator [(41.11)] applied to a function y may be written as

e

e -
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1 82y
Ov =2 V2(Ay)p (56.10)
where (Ay)h denotes the Laplace operator in the conformal space:
1 8 .. oY
AW = 75— | Vh- hik — 56.11
(A¥)h = Vhox;| dxy ( )

Hence we see that spatial coordinated that are harmonic in the four-dimensional
sense will also be harmonic in the three-dimensional conformal space.

We denote the four-dimensional Christoffel symbols (formed from the metric
tensor guv) by (GPpv)g and the three-dimensional Christoffel symbols (formed from
the metric tensor hjx) by (Gix)n. Similarly we shall attach suffixes g and h
respectively to quantities that are tensors in relation to the metrics (gyuy) and (hik)-

The four-dimensional Christoffel symbols and the curvature tensor can be "
expressed in terms of the corresponding three-dimensional quantities.

These expressions will involve derivatives of the three-dimensional scalar V,
which we will denote by

oV . )
Vi =—, (Vi) = hiky 56.12
k 5y (VHn k ( )

The suffix h attached to the Vi will sometimes be omitted for brevity. The Christoffel
symbols with purely spatial indices will be
(Vhp Vi Vi
(Tlik)g = (Cp + hix—~— - hlk-v-— hli'v_ (56.13)

If one or all three indices are zero, the Chrisroffel symbols become zero:

(Mp0)g =0, (Mjig=0 (I“kio)g =0 (56.14)
Finally, if two of the indices are zero we get
. . Vi
(Toolg = 2V3(Vhy;  (Moi)g =37 (56.15)
Using the general formula
8rPg, orP
I ov
RPouv =5 ™ e, * oW Py~ TV Pay (5616)

we can express the four-dimensional curvature tensor in terms of a three-
dimensional tensor and the covariant derivatives of the three-dimensional scalar V.
Leaving out elementary, though rather tedious, calculations we obtain for the
components with four spatial indices

1 1
Rl mg = ®Rlimidh + him 7V - hikg(Vimh

+ hly %(vim)h - hlm %(vik)h - (himhl - hixhly) %(vjvi)h (56.17)
where (Vikh is the second covariant derivative of V with respect to the meh'i'c‘b_‘__(h")':
(ViK) =—§%V—-(ri- . :
ik’h SxiBx) ik’h 5x’-
and (Vli)p is the same derivative with a suffix raised:

(56.18)
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(Vlon = hil (vipp (56.19)
If only one index is zero, we have

®R %,mklg =0 [®l, ,mk)g =0 RY oklg =0 (56.20)
If two indices are zero we get

(Roo,mk)g =0 (56.21)
and also

2
(RO oKg = _(ka)h"' 5 ViV = hj - ——(V V’)h (56.22)
and finally
Rlo,ok)g = 2V2 (V¥ + 2vIv) - hly (ViVn} (56.23)
It is now simple to form the contracted curvature tensor which enters

Einstein’s gravitational equations.
Using the formula

Rik)g = RM; midg + R ok)g (56.24)
we obtain from (56.17) and (56 22)

(Ril)g = (Rik)h— hik - V(AV)h + {72—2 ViVk + hjx - %,—(VjVi)h (56.25)
where (AV)y, is the Laplace operator applied to V:
(AV)h = (VKD = J—hs%i[«ln hik S—le (56.26)
On the other hand the formula
(Roolg = R¥o kolg = = (R¥q o1)g (56.27)
gives, using (56.23),
(Roolg == c2V2 (V - (AV)h — (V;VI)p} (56.28)
As for the mixed components of Ry, they vanish as a consequence of (56.20):
(Ro1) =0 ' (56.29) ‘

By virtue of the relations (56. 06) between the four- and three-dimensional

metric tensors, equations (56.25), (56.28) and (56.29) lead to the following expressmn
for the invariant (R)g:

R)g = =V2(R)p, + 2V (AV)p, - 4 (V,-V’)h (56.30)
We denote by I'jy the conservative Einstein tensor

1
Guv = (Ruv)g - iguv(R)g (56.31)

and by Hjy the conservative tensor in the conformal space

1
Hik = Rikh - 5hik(R)p (56.32)
The invariant of the latter is
. 1
H = hikHjp = -5 ®)y (56.33)

as a result of which we have
(Rix)h = Hijx — hjxH (56.34)
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For the spatial part of the conservative Einstein tensor we obtain the simple
expression

2 1
Gik=Hjx =5 V2 ViVk - hik V—(V Vih (56.35)

which is remarkable for the fact that it does not contain second derivatives of the
three-dimensional scalar V.

The mixed components of the conservative tensor vanish, :
Glo = 0 (56-36) :,;a:‘
while the component Gqg is given by :

Goo = 2V2 {-VZH - 2V (AV), +3 (VjVhp}  (56.37)

We go over to the formulation of the gravitational equations. We have just noted
that the quantities Gjx do not contain second derivatives of V. On the other hand,
(56.28) shows that Ryp does not involve second derivatives of the hjx. Therefore, if
we write down the gravitational equations in a form solved with respect to Rgg and
Gik the second derivatives of V and of hjk will be separated from each other. By
virtue of the general equations

1
which are the covariant form of (53.03), we have
1
Roo = - X(TOO - EgooT) (56.39)

where T is the invariant
T=(T)g=(T%+Tl1+ T2+ T33)g (56.40)
Hence by virtue of (56.05) we get
1
Roo = =73 Xc2V2 (TO — T11 - T2; - T33)g (56.41)
and, by using the value (56.28) of Rog:
: 1
V- (AV)p = (ViV)h = 5% (TO = Tl; - T2; - T33)g (56.42)
The equations for the spatial components are
2 1 ;
Hjy + V2 ViVk - hjk - vz (Vjvl)h =-xTik (56.43)

As regards the equations for the mixed components,
Gio = = xTjo (56.44)
they are satisfied 1dent1ca11y, because here the left-hand side is zero by virtue of (56. .36)
and the right-hand side is also zero, because the mass current is zero.
The equations so obtained acquire a more pictorial form if one introduces

some new symbols.
We put

1 |
p=17 (1%~ 11 -T2, - T33)g (56.45)

The quantity m can also be written in the form
= c2T00 + hikTy (56.45)

e
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As may be seen by comparing this with the approximate expression (55.02) the
quantity m represents a certain mass density; we shall see that it can be interpreted as
the mass density in the conformal space.

Further, we replace V by the quantity ¢, according to the formula
V= e'q) (5645)

so that the relation between the space-time metric and the metric in the conformal
space takes on the form

ds? = c2e20d2 - e20d 2 (56.47)
we have
®_ Vi
& -V (56.48)
AV VI
A==+ 32
Therefore, the gravitational equations (56.42) and (56.43) may be written as
1
(A)R = —5x1 (56.49)
Hik = - 26;0k - hik (96 - xTixk (56.50)

The first of these equations is essentially Poisson's equation for the Newtonian

potential U. Indeed, the symbol A is a generalization of the Laplace operator, m is the
mass density and, by (55.15), the constant x is given by

gy
Therefore, if we put
U
o =2 (56.52)
the quantity U will satisfy the equation _
(AU)p, = - 4myp (56.53)

which differs from equation (55.13) for the Newtonian potential.
We can also put

o = 2 (56.54)

where g;j is a component of the gravitational acceleration

Let us now clarify the physical meaning of (56.50). Apart from a factor the

terms involving ¢ can be interpreted as gravitational stresses. If we put

20i¢k — hik (0eDh = xT ik (56.55)
we can replace (56.50) by
Hik = - x(T ik + Tjg) (56.56)
The three-dimensional divergence of the tensor Tjk, understood as referring to the
metric (hjk) is

%* 2
(VT 10n = 5 01 (A)p (56.57)
and by (56.49) we have

»
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(VkT*ik)h = - noj (56.58)

On the other hand, since Hjk is a conservative tensor in the conformal space
its divergence is zero. Therefore, apart from its sign, the divergence of the
gravitational stress tensor is equal to the divergence of the tensor of elastic and other
static stresses Tjk. Thus we have

(VKTjj)p = pno; (56.59)
These equations represent a generalization of the usual equations in the statics of
elastic bodies in a gravitational field.

The equations for the statics in conformal space, written in the form (56.56)
stand in analogy to Einstein's equations in space-time. In both sets of equations the
left-hand side involves a conservative tensor, while on the right there is a stress
tensor or its four-dimensional generalization. Here the gravitational stresses appear
in explicit form only after space have been split off from time and after passage to the
conformal space.

The conformal space will be almost Euclidean. Indeed, as is seen from (56.54)
and from the estimates (55.02) for the tensor Tik the right-hand side of (56.56) will be

if the order g;2/c2. This leads to the result that the deviation of the hik frorh ‘their

Euclidean values will be of the order U2/c4. This result is in agreement with the
approximate formula (55.45), which was just the basis for introducing the conformal
space.

For empty space, when TgB = 0 and p = 0, equation (56.49) is a consequence of
(56.50). It is easy to see this by equating the divergence of Hijk to zero using (56.57).

If the mass tensor Typ is zero the whole of space, the only static solution of
Einstein's equations which has no singular points and which satisfies the boundary
conditions will be the solution correspondmg to Euclidean space and pseudo»;
Euclidean space-time. This can be shown in the following manner. In the casg of
empty space, equation (56.49) gives (A9)h = 0. This is an equation of the elliptic type
for f, which represents a generalization of Laplace's equation. The function f and its
derivative f;j must be everywhere finite and continuous and at spatial infinity they
must tend to zero. But the only solution of Laplace's equation that satisfies these
conditions is the solution ¢ = 0. But then the derivatives ¢j will also vanish and
therefore also expression (56.55). Since in addition Tik = 0 we also have Hjk = 0.
Hence it follows that the curvature tensor of the conformal space is zero, and the
space itself is Euclidean.

APPENDIX VII
(The following text is published in the Theory of Space, Time and Gravitaton,
Chapter v, pp. 209-215 and is incorporated herein by reference.

According to the present invention, departures from the text have been made.
Additions are underlined and deletions are [bracketed] and initialed.)

57. Rigorous Solution of the Gravitational Equations for a Single Mills Orbital and a
Gravitating Mass [Concentrated Mass]

In the case of a [concentrated] mass as a Mills orbltal a rigorous spherically

symmetric solution of the gravitational equations can be found. As we are dealing

with a static case we can use the results of the foregoing section, and write ds2 a$
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ds2=c2V24s2- Ld 2 (57.01)
Se=¢ V2 O .
d 02=hy dx; dxy (57.02)

If x;, X5 and X3 are harmonic coordinates we can introduce spherical coordinates .’

related to them by putting
Xy =r*sin Bcos @
X2=r*sin Osin ¢ (57.03)
x3=r*cos0

The assumption of spherical symmetry implies that the expression for do? is of the
form

do? =F2dr? +pX(d 92 +sin2 ® dg?) (57.04)

T

where F and p are functions of r * only. The coefficient V must also be taken to .

depend only on r*.
We note first of all that if we put

Fdr*=dr (57.05)
we can reduce the general expression (57.04) to the case F =1, so that
do? = dr 2 + p2(d9? + sin20d¢2) (57.06)

It is true that in doing this it may happen that the radius-vector r will be "non-
harmonic”, in the sense that it is not related to the harmonic coordinates, x1, x3 and
x3 by equations of the form (57.03). But having formed Laplace's equation for the
quantities (57.03) with r * replaced by r one can always go over afterwards to a
"harmonic” radius vector r *.

For the metric (57.06) we get

hrr=1, hyg=p%, hggp = pZsin2s, (57.07)

hﬁ(P=O’ hqn-=0, hrg=0
and therefore

1 1
hT=1 h¥%=— hoo=——r>r, 57.08
p2 p2sin2y ( )
h99 =0, hPr=0, hrd=p
Hence
vh = p2 sin® (57.09)
and the Laplace operator in the conformal space may be written as
1 8( 50y 1 '
Ay =—— p2— |+ —Ax 57.10
¥ o2 &P 8r]+p2 v 710
where Ay is the Laplace operator on a sphere:
dyy 1 82y
Avy =———gind— |+ ———+ 11
¥=sino s Smﬂaﬁj ¥ sinZt 92 G710

As a consequence of (56.10) the harmonic coordinates must satisfy Laplace's equation
in conformal space. For the quantities (57.03) we have

Axxj = - 2xj (57.12)
Therefore the condition for harmonic coordinates

Q‘Y"’_@ -

el
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Axj=0 (57.13)
reduces to the form
d dr
ar (p ar )- 2rx=0 (57.14)

This is the equation to be used in passing from the initial radius vector r to the

harmonic one, r *.
By applying the general formulae to the metric tensor (57.07) and (57.08) the following

expressions for the 18 Christoffel symbols can be derived:

T 0 [0}
r =0 r =0 r =
T IT IT
. ' oo oo
oo PP 00 08
r . 8 . o
I' =-pp'sin2§ I' =-sinfcos® I =0
o o) W
)
oo o 2o (57.07)
o 8 p ro
)
rr = O I' = O ) Fq) = —p',-
rd r$ o P
r 0 ]
T =0 T =0 T = cotd
0 06 8¢

Here the prime denotes differentiation with respect to r . The Christoffel symbols and
all tensor quantities used in this section refer only to the conformal space; therefore
there is no necessity to attach a suffix, as was done in Section 56.

Using the Christoffel symbols tabulated in (57.15) we form the three-
dimensional fourth rank curvature tensor and then, using the equations

8 o} Lo}
Rir =R +R ; Reg=R ;
rOr T ér r ¢6
Rep R R’ Rep _ RO (57.16)
- + ; _ ; :
0="0r" 008" ¥ rog
R 4R Rag =R
= + ; Rgg = ;
Ro0=R oo N gae’ 00=F gy

the second rank curvature in the conformal space. in the equations for the non-
diagonal components we have omitted terms in which the first lower index is equal
to the upper index: owing to the symmetry properties of the fourth rank curvattre
tensor these terms vanish if the coordinate system is orthogonal. In the general
formula (56.16) we leave only those terms which are different from zero and so
obtain

5 %y

ror or

+ 0 MOy, (57.17)
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and after inserting the values of the Christoffel symbols from (57.15)

R B (57.18)

The calculation shows that R(p ror has the same value:

rR® B (57.19)
Trer op
Therefore
Ry = 2% (57.20)
Further, we have
oIty
r T
=- 7.21
R oos » + 05, T (57.21)
whence
r "
R 5rp = PP (57.22)
Continuing the calculation, we get
ore
¢ _.27%
whence
¢ . 2 (57.24)
R =-1+
ogs P
Inserting (57.22) and (57.24) into (57.16) we find for Rgy the expression
Rgg=pp"+p2-1 (57.25) 3
Similar calculations give ‘ :
Rpg = sin20Ry4 (57.26)

as was to be expected for reasons of spherical symmetry. The non-diagonal elements -
of the second rank curvature tensor prove to be zero:

Rrg=0; Rrp=0; Rygp=0 (57.27)

The invariant of the three-dimensional curvature tensor can be calculated from the
formula

2
and will be given by

) .
R= p_z (2pp" + p'2 -1) (57.29)

Applying equation (56.32) we get the following simple expression for the
conservative tensor of the conformal space
1-p2
Her = ~—5— Hgg = -pp" Hgg = -pp"'sin6,

p2 (57.30) o

g
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Hro=0 Hry=0 Hpp=0
{We could have obtained these expressions by a somewhat simpler method using the
relation which, in three dimensional space, connects the covariant fourth rank tensor
and the conservative tensor. This relation is discussed in the Appendix G. In the
notation of this section equations (G.13) of the Appendix may be written in the form

hH' =Rgg,09; hH=Rpgrg; hHOO==Rrgrq;

hHO0 = Ror,r6; hH¢r = Rre'eq) ;  hHIE = R9¢,¢r ; 573D
It is easy to see that these formulae lead to expressions (57.30) as previously found.]
The formulae we have derived allow us to write down Einstein's gravitational
equations in explicit form. In the previous section we saw that if one writes ds 2in

‘the form
ds? = 220 di? - 20402 (57.32)
where has the value (57.04), the gravitational equations appear as
1
A =-7xp (57.33)
Hik =~ 20i9k - hik (0j6)h — xTik (57.34)

where the "mass density |t is given by (56.44) and (56.45). Going over to the present
case of a shell having mass concentrated at a radius rg [point] and using spherical
coordinates, in which the Laplace operator has the form (57.1(3§ while the quantities
Hjy are given by (57.30), we obtain o

1d ,
80="7ar p20) =0 (57.35)

-p2
HI'I' = 1—‘)[2)_ = .¢‘21
Heg = -pp"= Hgg = -p%9'2
The equation for Hy¢ differs from that for Hgg only by the factor sin20, while the
remaining equaitons of (57.34) are satisfied identically.
Integrating (57.35) we get
p2¢' =- 0. (57.37)

where is a constant. Since equation (57.35) is a limiting case of (57.33) with positive
M, the constant o should be taken positive. Indeed, considering forst (57.33) and
putting '

4xfup2dr=m (57.38),
where the integral is extended over the whole region in which y differs from zero

which is at theradiusr=rp _and where

m
L= S (r-ry).
41tr02 ©
We see that (57.37) holds everywhere forr > Iy, with o given by
ym
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where m is the mass of the Mills orbital. Here p is the Newtonian gravitational

constant, related to x by (56.51). Thus, it is evident that the constant o of (57.37) is
solved by matching boundary conditions of the discontinuity of curvature of
spacetime for r > ry. The superposition_principle holds: thus, the total curvature is

given as the sum of the curvatures produced by Mills orbitals, and the mass in the

gravitating body

a= % (57.39)

[4n Iupz dr=M (57.38)

where the integral is extended over the whole region in which p differs from zero, we

see that (57.370 holds everywhere outside this region, with o given by

o= Mz (57.39)
C

relationship for o (57.39A) is given as the total mass: M, of all the Mills orbitals of the ; .

Here vis the Newtonian gravitational constant, related to x by (56.51). Evidently M is

the mass of the gravitating body; in] In going over to the case of a concentrated mass

this quantity, and with it o, remain finite and positive. The dimensions of o are

those of a length, which is why it is called the gravitational radius of the mass.
Inserting the value of ¢* from (57.37) into the first equation of (57.36) we obtain
2
o
p2=1+ p—2 (57.40)

and taking the square root so as to satisfy the requirement that we have p' +1 at
infinity, we get

pp'= V(p?+0o?) (674D
Differentiating this expression with respect to r we obtain

pp'+p2=1 (57.42)
which shows that the second equation of (57.36) is also satisfied.

The differential equation (57.41) is easy to solve by quadrature; after setting the

additive constant zero, we get

r = V(2 +a?) (57.43)
whence
p=Vr2-o2) (57.44)
Thus finally
do2 = dr2 + (12 - 02)(dd2 + sin2® do2) (57.45)
By its physical nature p must be postive and therefore the range of variation of r is
r2o (57.46)

We must now discuss the harmonic condition. Inserting the value of p from (57.4)
into (57.14) we see that the harmonic radius vector r * satisfies the equation
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% .
'g'lj(r2 -02) %E_‘ -2rx=0 (57.47)
Evidently this equation has the solution
r¥=r (57.48)
It is easy to show that this is uniquely the solution which for finite » remains finite
in the whole region (57.46) and which at infinity differs from 7 by not more than a
finite quantity. Therefore the variable r which enters our formulae is itself the
harmonic radius vector and in place of (57.03) we can simply write )
X;=rsin Bcos ¢
Xp=rsin Bsin ¢ (57.49)
X3=71C0s 0

It remains to find the quantity ¢. Integrating (57.37) and taking into account the
boundary conditions we get from (57.44)

oodr
=[5 (57.50)
I-o
r
or
1 r+o
¢=5In (57.51)
r-o
Hence
-0
V2= (57.52)
r+o
The expression (57.01) or (57.32) for ds2 takes on the form
-0 +
ds? = 27— g2 - = g2 (57.53)
r+a r-«c

and, after inserting the value of ds2 from equation (57.45) we get

ds2=2 C - “) di2- (== “) dr2 - (r+e)(d02 + sin20de2)  (57.54)

+a r-o
The rigorous solution so obtained confirms our conclusion that the conformal

space is almost Euclidean and that ¢ is approximately equal to U/c2, where U is the
Newtonian potential for which we can put

u-2 (57.55)
Indeed, equation (57.45) shows that the components of the metric tensor of ds2

have relative deviations from their Euclidean values of the order

o2 U2

24 (57.56)
and that the error of replacing ¢ by U/c2 will be of the same order. [As the estimate
given in the following section will show,] the quantity (57.56) is extremely small. One
should note that such close agreement with Newton's theory is obtained only if
harmonic coordinates are used.




WO 90/16073 PCI'/US90{03441
78

[The solution of the problem of a concentrated mass in a form equivalent to
(57.54), but in arbitrary non-harmonic coordinates, was first derived by Schwarzschild
[18] and is often named after him.]

Modification and substitution mode by one of ordinary skill in the art are within the

scope of the present invention, which is not limited except by the claims which
follow:




o R Y

10

15

20

30

35

40

WO 90/16073 : PCT/US90/03441

79

CLAIMS

What is claimed is:
1. A method of providing a repulsive force from a gravitating mass having a
spacetime manifold of a first curvature comprising the steps of:

providing an element of matter;

forming said element of matter into a second curvature opposite to said
first curvature;

applying energy from an energy source to said element of matter having
a second curvature wherein a repulsive force away form said grav1tatmg mass is
created;

receiving said repulsive force on said energy source from said element
of matter in response to the force provided by said gravitating mass and said
applied energy.
2. The method of claim 1, wherein said step of providing an element of matter
comprises the step of providing an electron.
3. The method of claim 1, wherein said first curvature comprises a positive
curvature. '
4. The method of claim 3, wherein the step of forming comprises the step of

applying one of a quadrapole electrostatic field, a quadrapole magnetic
field, and an electromagnetic field, and further including the step of

moving said electron through said selected one of the quadrapole
electrostatic field, quadrapole magnetic field, and electromagnetic field.
5. he method of claim 4, wherein the step of moving includes the step of
containing said electron.
6. The method of claim 1, wherein the step of applying energy comprises the step *.
of applying at least one of electrostatic, magnetostatic and electromagnetic energy..
7. The method of claim 6, further 1nclud1ng the step of applying the received
repulsive force to a structure movable in relation to said gravitating means.
8. The method of claim 7, further including the step of rotating said structure
around an axis providing a force having an angular moemeritum vector of said
circularly rotating structure parallel to the central vector of the gravitational force
by said gravitating mass.
9. he method of claim 8, further including the step of changing the orientation of
said angular momentum vector to accelerate said structure through a trajectory
parallel to the surface of said gravitating mass.
10. A method of providing a repulsive force form a gravitating mass having a
space time manifold of a first curvature comprising the steps of:

providing an element of matter having a second curvature opposite to
said first curvature;

applying energy form an energy source to said elemnent of matter having
a second curvature wherein a repulsive force away from said gravitating mass is
created;

receiving said repulsive force on said energy source from said element
of matter in response to the force provided by said gravitating mass and said
applied energy.
11. Apparatus for providing repulsion from a gravitating body having a
spacetime manifold of a first curvature comprising:
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an element of matter;

means for forming said element of matter in a curvature opposite to the
curvature of said gravitating body; and v

means for applying energy to said oppositely curved element of matter,
wherein

a repulsive force developed by said oppositely curved element of matter
In response to said applied energy and is impressed on said means for applying
energy in a direction away from said gravitating body.
12. The apparatus of claim 11, wherein said element of matter comprises an
electron.
13. The apparatus of claim 12, wherein said means for forming comprises

means for providing a negatively curved field on said electron, and

means for moving said electron through said negatively curved field,
causing said electron to assume a negative curvature.
14. The apparatus of claim 13, wherein said means for providing a negatively
curved field comprises means for providing at least one of a quadrapole
electrostatic field, a quadrapole magnetic field and a quadrapole electromagnetic
field.

15. The apparatus of claim 13, wherein said means for moving includes at least
one of

means for accelerating said electron along a selected path; and

means for containing said electron along a selected path.
16. The apparatus of claim 15,.wherein said means for accelerating comprises
means for providing at least one of an electric field gradient, a magnetic field and
an electromagnetic field along said selected path. '
17. The apparatus of claim 15, wherein said means for containing comprises at
least one of a means for providing spatially and temporally coherent light along

said selected path, a means for providing an electric field and a means to provide

a magnetic field.
18. The apparatus of claim 11, further including

a circularly rotatable structure having a moment of inertia; and

means for applying said repulsive force to circulating rotatable structure,
wherein

the angular momentum vector of said circularly rotatable structure is
parallel to the central vector of the gravitational force produced by said
gravitating body.

19. The apparatus of claim 18, wherein said accelerating force is selectively applieci _

to provide a trajectory parallel to the surface of said circularly rotatable structure
around said gravitating body.
20. The apparatus of claim 18, wherein said accelerating force is selectively applied
to provide a hyperbolic trajectory of the circularly rotatable structure around said
gravitating body.
21. Apparatus for providing a repulsion from a gravitating body having a
spacetime manifold of a first curvature comprising:

an element of matter having a curvature opposite to the curvature of
said gravitating body; and
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means for applying energy to said oppositely curved element of matter,
wherein

a repulsive force is developed by said oppositely curved element of
matter in response to said applied energy and is impressed on said means for
applying energy in a direction away form said gravitating body.
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